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1. ABSTRACT different locations may produce close unfolded.Hitsthis

se, a group of hits associated to a target aadnde hits
m other targets. These hits are removed fronr thitber
ambiguous locations, including the right one, thusking
more difficult the target detection process. Toidwuch hit
suppressions, the extractor combines a seriesisf te

Standard radar processing chains compute cohereﬁj
processing functions, estimate noise level and yappl
associated threshold. Then, the extraction functiosups
elementary detections to distinguish between tlierdnt
targets and to estimate their position. In this gpagt is
proposed to combine coherent filtering, threshadand Another approach consists in considering the psicgs
extraction into a single Compressed Sensing pratasged chain as a single global function, designed to radehited
“Extract Before Detect”. The proposed techniquéased number of global objectives:
on Approximate Message Passsing (AMP), adaptedhdo t .

structure of radar signals: N blocks of complexasig. to locate the targets in the unfolded domain

¢ to determine their complex amplitudes.
Index Terms—Radar processing, Compressed Sensing,

Approximate Message Passing, Complex, Block. In this paper, we propose to apply this global epph

by using a Compressed Sensing technique, basedheon t
Complex Approximate Message Passing algorithm,
2. INTRODUCTION CAMP [2].

In section3, the global objectives of radar processing
» Coherent processing : Digital Beam Forming, Pulsare written in terms of Compressed Sensing, and the

Standard radar processing chains combine

Compression, Doppler Filtering characteristics of the structure of radar signedsamalyzed:
« Noise estimation : Constant False Alarm Rate, €iutt series of blocks of complex signals.
Maps

In section4, the block-CAMP algorithm is described,
. - > Y using complex derivatives and matrix notations, and
exceed.s the threshold deduced from.n0|se estimation o +-ded to any coefficient matrix. We will dendtes
< Extraction : grouping together the hits most prdpab algorithm by N-signal Complex Approximate Message

associated to the same target, and computing tlaa mePassing N-CAMP.

position of each group of hits. '

e Thresholding : selection of hits where the signal

) ) . In sectionb, simulation results are obtained by applying
The radar waveforms are often ambiguous in range, ipig algorithm to ambiguous radar signals.

Doppler or both. In this case, the radar transreéseral

bursts with different range and/or Doppler ambigsit to The section6 summarizes the effectiveness of this
solve ambiguities by combining the hits from théedient — approach.
bursts. 3. COMPRESSED SENSING RADAR PROCESSING

To do so, an extraction method consists in unfgldin ;
each hit over all possible ambiguities in the “Udéal 3.1 Radar signals
domain”, and to group the hits issued from the edéht Let us consider here that the transmitted signakicts
bursts, in this domain. Whenever a group of hits heen of a sequence of bursts. The radar sigrifateceived during
identified, all the ambiguities of these hits aeenpved, and burstk (k = 1---K), can be modeled as the sum of a noise
the algorithm proceeds to the next group of hits. n* andI received echoes backscattered by the targets. Each
received echo (indek=1---1) is the product of the echo

This method suffers from possible errors when gi
P gD complex amplituderf and the echo “signature* (p¥) that

the hits. Due to ambiguities, echoes from multiplegets at



depends on the echo positignf and on the signal
transmitted during burgt:

(1) y* =n*+ 3 A%(pk) - xF

Echo positiorp contains several parameters like range,

azimuth, elevation, radial speed. In this paperdistinction
is made between these parameters: echo position
considered as a whole. Moreover, it is assumedtieadcho
position does not vary during the set of burstscessed
together (if an echo position would vary, one codddcribe
the variation by a model of higher order whose petars
do not vary, and the set of parameters would td&eepof
the echo position):A*(pf) = A*(p;) = A¥. Under this
assumption, the received signal can be written as

() y*=n*+XAf -xf

the vector that contains the elemenfsi = 1---1 and4¥ is
the matrix that contains the vectets i = 1---I. This gives

(6) Ak -xk = jk . ik

As the target position does not vary from bursbtiost,
non-zero locations remain at the same place overKth
tisirsts. However, amplitudes vary from burst to huesi*
is not constant over indek. In a similar way, the burst
parameters (including the size of the observatientar)
vary from burst to burst, so thaf is not constant over
indexk.

3.3 Radar processing objective in terms of Compressed
Sensing

The aim of radar processing is to detect and tatéoc
received echoes from observed signals, that isntb dcho

The received signal consists of a block of complexomplex amplitudes (to detect) and to find assediat

signals with several dimensions: the number of ivecs,
the number of coherent pulses and the number geraims.
Here the block of radar signals is assumed to litewrin a
vector whose length is the product of the blocketisions:

positions (to locate). In terms of Compressed $endhis
corresponds to determine, from observed vecidist =
1---K, the sparse vector, k = 1--- K such that their non-
zero elements correspond to the same position @alékote

Ak n* andy* are vectors. As the dimensions of the blocks?!so that the Compressed Sensing setting indedt:sihere

vary from burst to burst, the vector lengths alsoyvfrom
burst to burst.

since the matriced* are rectangular matrices with much
less rows than columns.

Finally, in this paper, it is assumed that the ech®.4 Extract Before Detect

complex amplitude of a given target can vary froansb to

The proposed Compressed Sensing processing produces

burst. This arises for instance when the frequenc&t once the echo position and their amplitudesxtitacts the

transmitted by the radar changes from burst totburs
3.2 Compressed Sensing

positions at the same time it detects. We thergfoopose
to denote this approach “Extract Before Detectaialogy
with Track Before Detect algorithms that producecks at

The proposed Compressed Sensing strategy considefs, same time that they detect.

the large set of “all possible” echo positions, @sdumes
each position is associated to a complex amplithdeonly
few of them are non-zero:

(3) ¥y =n*+ 34 - xf

where the summation extends over all possible iposit
j=1-], andxj" is non-zero only if is an index associated
to a real target position, thatds : j = j(i) wherej(i) is the
table that provides the correspondence betweertatiget
index and the position index.

VectorsA]’-‘, j=1--] can be grouped in a matri,
and associated amplitudf;%,j = 1---J in a vectorx®:

(4) y* =nk + A% - x¥
Without loss of generality, each column of the xas
assumed to be normalized:
H 2 .
(5) Af" - AF =T |Al;|" = 1vj

Let us denote by* the vectorx® reduced to its non-
zero elements, and’ the matrixA* reduced to the vectors
associated to the non-zero elements’fThis mean&™® is

4. CAMPAPPLIED TOMULTIPLE BURST
SIGNALS

[3] extends AMP algorithnfil] to the case of N-signal.
In this section, this algorithm is written in these of
complex signals, using complex notation (complemhbars
and their conjugate) and matrix notations, whilmeoging
any restriction over some matrix properties.

First, let us notice that grouping

observed signalg®, k = 1--- K into a “long” vectory
matricesd®, k = 1--- K into a “long” matrixA
+ echo amplitudes®, k = 1---K into a “long” vectonx

does not reveal any simple linear relationship leetwthem,
since complex amplitudes® change from burst to burst.
Thus N-signal processing cannot be reduced to gelot-
signal processing of the forsn=n + A4 - x.

4.1 N-signal complex soft threshold variation

[3] and [4] describe the Compressed Sensing block-soft
thresholding operator applicable to a set of reghals
V= Uk cee,



(™) n(v; 1) = max (O 1-— T ) v

The same expression applies to complex signalthdn
case||v||, > 4, that is|n(v; 1)| # 0,

®) 1@ D) = (1= 2+ (T v™ ™)) vk,

its complex derivativef][7] are

ank(v;a) _ 1 n*.,k
©) avm (1 Ilvll2 ) 8k —m) + 2 llvll2
ankw;1) _ &vn-vk
10) av T 2 |lvli3

and the soft threshold differential is

A)n*(w + dv; 1) —n*(v; 1)
an*(v; 1)
=) T
n
% +dv; 1) — n*(v; /1)
(12 = (1 ||v||2) dv* +5 ||v||2
n dvn

2 IIVIIzZ" ||V||2 lvll2
4.2 N-signal CAMP (N-CAMP)
N-signal CAMP is based on CAMP expressi¢2k[5]

an*(w; )

- dv™”
avn*

dv™

Ilvllz

i
Jhialy
Tl

applied to thek vectors of observed signals, while taking

into account the fact that the non-zero entriesl@arated at
the same position index for all observed signals

13ka_2 Ak* kt 1+xkt1
b b]
(14)xk't = nk(vj;rt)

- ya ZjAk

(15)
=34l (0 (vf + dviwe) = (vfi )

Let us consider the burst associated to the longest

observed signal (assuming only one burst is assuti®
the longest observed signal), and let us demgig, the
maximum index value of the observed signal apg, the
associated burst index. Expressi(tb) applied to index
Amax CONtains

(16) dv

1t Kkt Kt
frd d’,_] eee eee

Amax.J Amax.J Amax.J Amax.J

For all burst indices but,,,,, the length of vectoaiv_’_"']it
is smaller tham,,,,,, SO expressiolil6) is not defined. In
this expressiondv,

vector that gives sensedvime!.
max:

;- More generally,

should be restricted to the only

kt _
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Using matrix notations, we obtain the following st
equations:

(19)

21 1
(Bt

4.3 N-CAMP matrix notation

(20)vht = AKM Zkit=1 4 ylit=1

Dukt = ””t” [term by term operations over indgx

22)wt = o t” [term by term operations over indgx

(23)x*t = Max(0; 1 — wh)v*t [term by term operations
over indexj]

ZRt = yk — Aktykt
n ((A'ic',t . A'I'c',t*) : (1 —wt it oukt o u‘ig,t*))
2

kit-1

(24)

°Z

n (( Akt o e (1Wt 0wkt o u‘ie,t)) o Flot-1*
2
4.4 Real signals, single burst

In the case of real signals, and a single bursg th
expression reduces to

(25)z¢ = y — Atxt + ((A"f o At") -1) ozt71
and, if all matrix coefficients have the same maodul
1 .
that is if |A,;| = 7w WhereN, s the number of elements

of y, then this expression becomes

whereN; is the number of non-zero elementscbf

This expression differs a bit from those given[b}j2].
The reason is that these references suppose thauth of

expression(15) should be based only on the variationshe squared lines of matri4 are constant (exactly or

associated to burst indéxdv,f = —A¥zy ™" [2] :

(A7)dv;; = (0,-+,0, —AZ}zg't'l, 0,-+,0)

statistically). In this paper we do not make suahm a
hypothesis about matrix4, we rather only assume its
columns are normalizeg®).



4.5 Coherent Extractor

As no restrictive hypothesis is made about ma#jx
one can envisage to apply N-CAMP to radar signiatsady
processed by standard coherent functions (DigitaarB
Forming, Doppler Filtering, Pulse Compression). this
case, the processed signal is

(27)y"* = B* - yk = 4" - x*
whereB¥ is the processing matrix add* = B* - A*.

A’¥ columns contain the set of filter responses to
given echo position. Their energies are maximunthi@
filter matched to echo position, lower in adjacditters
(main lobe edge), and much lower in farther filtésele
lobes). Figure 1 shows matri¥l’® in the case where the
observed signal is a set of Doppler filters, andget
position is the radial speed, lying 2 VE,,;2VE ]

where Vk . is the ambiguous speed. 2 columns are
The Tpe speed difference between both targets is 255 m/

highlighted, associated to 2 target speeds.

corresponding reduced mateiX” is shown on the right side
of Figure 1.

i i i

Figure 1 Multidiagonal matrix (full and reduced matrix)

The squared sum of matrik” lines corresponds to the
energies obtained in all observed filters, that “high” in
filters matched to real echo positions, and lowerother
positions. One sees it is important, in this caset, to
assume the lines have a constant energy.

Finally, as the lines close to echo positions arehm
more energetic than the lines “far away” from thesng
probably misses only a small information amount twt
observe those “far away” lines. In other words, coeld

process by the Compressed Sensing technique the onl

filters that detected, plus some adjacent filters.

i T ——

Figure 2 Matrix reduced to its “lines of interest”

Standard radar processing chains work in this way.

They apply coherent filters, detect and transmity dhe
detected signals to the extractor.

The interest to process only the pre-detected Edna
a Compressed Sensing function is that it replacseyias of
tests over hit energies (standard extraction) bgxraction
method based on complex signals. In this case, Gzsved
Sensing acts as a Coherent Extractor.

5. SIMULATION RESULTS

N-CAMP expressions have been applied to radar Eigna
received in one range bin during 5 successive unside of
17, 19, 21, 23 and 25 pulses respectively. Allthests have

the same Doppler resolutiov = 2’; =10m/s. Their
ambiguous speeds are 170, 190, 210, 230 and 250 m/s

N-CAMP algorithm is used to detect and to locate th
echoes on the radial velocity range [-1000 m/sQOL6v/s]
with a 5 m/s step (oversampling by a factor 2). eNtitat
aarget radial speeds fit this grid.

5.1 Scenario 1, targets separated by 1 ambiguous speed

The following parameters were chosen for this first
scenatrio.

Target 1: 60 m/s, mean SNR = 50 dB, Swerling 2.
Target 2: 275 m/s, mean SNR = 20 dB, Swerling 2.

that is close to one ambiguous speed.

Green = observed "y, Red = estimated

s
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Figure 3 input and estimated signals versus time

The “weak” target is much lower than the “strongieo
(-30 dB), so that the signal is almost constanidamsach
burst. The variations from burst to burst corresptintarget
fluctuations. [Remark: 1-pulse SNR is equal to isb&NR
divided by the number of pulses (about -13 dB).]

In each burst, the estimated signal (red line)viigdl the
input one (green line).

Green = actual, Red = estimated and grid, Blue = first iteration and threshold
100
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Figure 4 matched filter output

The matched filter is an unweighted filter on ebahst,
followed by a non-coherent integration over the Usks
[Remark. This corresponds to the first iteration of
equationg20) ... (24)].



The matched filter output essentially reveals thestrategy can achieve at the same time the functafs

“strong” target. The weak target is deeply buriatbiits
sidelobes, it is not visible iRigure 4.

Green = actual, Red = estimated and grid , Blue = threshald
100
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Figure 5 input and detected targets

Green circles represent input targets, red dotsesent
detected targets. Both targets are detected aatelb@t the
right radial speeds. Estimated energies slightffedifrom
input ones.

5.2 Scenario 2, 2 targets close each other

For this scenario, the target radial speeds ar¢ose0
m/s and 65 m/s respectively (other parameters ap k
unchanged). The speed difference between bothtsaig®
m/s, that is half a speed resolution, in each burst

Green = actual, Red = estimated and grid , Blue = threshold
100
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Figure 6 input and detected SNR

Both targets are detected and located at the ragtial
speeds. Estimated energies again slightly diffemfinput
ones.

5.3 Overall resultsanalysis

detection, clustering and plot measurement.

Compared to a standard radar extractor, this psougs
scheme gains in sensitivity:

e It detects on the basis of the full set of observed
signals, in place of a burst by burst detectiofofeéd
by a “K over N” process

« It does not require the use of a weighting function
decrease the sidelobe level, since the proposatbgyr
can naturally take into account the presence of
(possibly high) sidelobes.

e Thanks to complex signals processing, small target
detection is not affected by the presence of strong
targets, even when ambiguity folding makes them
close to each other in some bursts.

To make it fully applicable to radar processingjsth
processing function should be enriched by an autcrged
adaptation to target position. Applied to signdiatthave
already been processed by a coherent filtering tilmmc
(Coherent Extractor), it should also take into artothe
noise measurements achieved by CFAR and clutter map
functions.
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