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1. ABSTRACT 

Standard radar processing chains compute coherent 
processing functions, estimate noise level and apply 
associated threshold. Then, the extraction function groups 
elementary detections to distinguish between the different 
targets and to estimate their position. In this paper, it is 
proposed to combine coherent filtering, thresholding and 
extraction into a single Compressed Sensing process named 
“Extract Before Detect”. The proposed technique is based 
on Approximate Message Passsing (AMP), adapted to the 
structure of radar signals: N blocks of complex signals. 

Index Terms— Radar processing, Compressed Sensing, 
Approximate Message Passing, Complex, Block. 

2. INTRODUCTION 

Standard radar processing chains combine 

• Coherent processing : Digital Beam Forming, Pulse 
Compression, Doppler Filtering 

• Noise estimation : Constant False Alarm Rate, Clutter 
Maps 

• Thresholding : selection of hits where the signal 
exceeds the threshold deduced from noise estimation 

• Extraction : grouping together the hits most probably 
associated to the same target, and computing the mean 
position of each group of hits. 

The radar waveforms are often ambiguous in range, in 
Doppler or both. In this case, the radar transmits several 
bursts with different range and/or Doppler ambiguities, to 
solve ambiguities by combining the hits from the different 
bursts. 

To do so, an extraction method consists in unfolding 
each hit over all possible ambiguities in the “unfolded 
domain”, and to group the hits issued from the different 
bursts, in this domain. Whenever a group of hits has been 
identified, all the ambiguities of these hits are removed, and 
the algorithm proceeds to the next group of hits. 

This method suffers from possible errors when grouping 
the hits. Due to ambiguities, echoes from multiple targets at 

different locations may produce close unfolded hits. In this 
case, a group of hits associated to a target can include hits 
from other targets. These hits are removed from their other 
ambiguous locations, including the right one, thus making 
more difficult the target detection process. To avoid such hit 
suppressions, the extractor combines a series of tests. 

Another approach consists in considering the processing 
chain as a single global function, designed to meet a limited 
number of global objectives: 

• to locate the targets in the unfolded domain 
• to determine their complex amplitudes. 

In this paper, we propose to apply this global approach 
by using a Compressed Sensing technique, based on the 
Complex Approximate Message Passing algorithm, 
CAMP  [2].  

In section  3, the global objectives of radar processing 
are written in terms of Compressed Sensing, and the 
characteristics of the structure of radar signals are analyzed: 
series of blocks of complex signals. 

In section  4, the block-CAMP algorithm is described, 
using complex derivatives and matrix notations, and 
extended to any coefficient matrix. We will denote this 
algorithm by N-signal Complex Approximate Message 
Passing, N-CAMP. 

In section  5, simulation results are obtained by applying 
this algorithm to ambiguous radar signals. 

The section  6 summarizes the effectiveness of this 
approach. 

3. COMPRESSED SENSING RADAR PROCESSING 

3.1 Radar signals 

Let us consider here that the transmitted signal consists 
of a sequence of bursts. The radar signal �� received during 
burst � (� � 1 ⋯ �), can be modeled as the sum of a noise ��  and � received echoes backscattered by the targets. Each 
received echo (index 	 � 1 ⋯ �) is the product of the echo 
complex amplitude 
�� and the echo “signature” ���
��� that 



depends on the echo position 
�� and on the signal 
transmitted during burst �: 

(1) �� � �� � ∑ ���
��� ∙ 
���  

Echo position 
�� contains several parameters like range, 
azimuth, elevation, radial speed. In this paper, no distinction 
is made between these parameters: echo position is 
considered as a whole. Moreover, it is assumed that the echo 
position does not vary during the set of bursts processed 
together (if an echo position would vary, one could describe 
the variation by a model of higher order whose parameters 
do not vary, and the set of parameters would take place of 
the echo position): ���
��� � ���
�� � ��

�. Under this 
assumption, the received signal can be written as 

(2) �� � �� � ∑ ��
� ∙ 
���  

The received signal consists of a block of complex 
signals with several dimensions: the number of receivers, 
the number of coherent pulses and the number of range bins. 
Here the block of radar signals is assumed to be written in a 
vector whose length is the product of the block dimensions: 	��

� , �� and �� are vectors. As the dimensions of the blocks 
vary from burst to burst, the vector lengths also vary from 
burst to burst. 

Finally, in this paper, it is assumed that the echo 
complex amplitude of a given target can vary from burst to 
burst. This arises for instance when the frequency 
transmitted by the radar changes from burst to burst. 

3.2 Compressed Sensing 

The proposed Compressed Sensing strategy considers 
the large set of “all possible” echo positions, and assumes 
each position is associated to a complex amplitude, but only 
few of them are non-zero: 

(3) �� � �� � ∑ ��
� ∙ 
���  

where the summation extends over all possible positions � � 1 ⋯ �, and 
�� is non-zero only if � is an index associated 
to a real target position, that is ∃	 ∶ � � ��	� where ��	� is the 
table that provides the correspondence between the target 
index and the position index. 

Vectors ��
�, � � 1 ⋯ � can be grouped in a matrix ��, 

and associated amplitudes 
��, � � 1 ⋯ � in a vector 
�: 

(4) �� � �� � �� ∙ 
� 

Without loss of generality, each column of the matrix is 
assumed to be normalized: 

(5) ��
�� ∙ ��

� � ∑ ���,�
� �� � 1	∀��   

Let us denote by 
�� the vector 
� reduced to its non-
zero elements, and ��� the matrix �� reduced to the vectors 
associated to the non-zero elements of 
�. This means 
�� is 

the vector that contains the elements 
��, 	 � 1 ⋯ � and ��� is 
the matrix that contains the vectors ��

� , 	 � 1 ⋯ �. This gives 

(6) �� ∙ 
� � ��� ∙ 
�� 

As the target position does not vary from burst to burst, 
non-zero locations remain at the same place over the � 
bursts. However, amplitudes vary from burst to burst, so 
�� 
is not constant over index �. In a similar way, the burst 
parameters (including the size of the observation vector) 
vary from burst to burst, so that ��� is not constant over 
index �. 

3.3 Radar processing objective in terms of Compressed 
Sensing 

The aim of radar processing is to detect and to locate 
received echoes from observed signals, that is to find echo 
complex amplitudes (to detect) and to find associated 
positions (to locate). In terms of Compressed Sensing, this 
corresponds to determine, from observed vectors ��, � �1 ⋯ �, the sparse vectors 
�, � � 1 ⋯ � such that their non-
zero elements correspond to the same position indexes. Note 
also that the Compressed Sensing setting indeed applies here 
since the matrices �� are rectangular matrices with much 
less rows than columns. 

3.4 Extract Before Detect 

The proposed Compressed Sensing processing produces 
at once the echo position and their amplitudes: it extracts the 
positions at the same time it detects. We therefore propose 
to denote this approach “Extract Before Detect” in analogy 
with Track Before Detect algorithms that produce tracks at 
the same time that they detect. 

4. CAMP APPLIED TO MULTIPLE BURST 
SIGNALS 

 [3] extends AMP algorithm  [1] to the case of N-signal. 
In this section, this algorithm is written in the case of 
complex signals, using complex notation (complex numbers 
and their conjugate) and matrix notations, while removing 
any restriction over some matrix properties. 

First, let us notice that grouping 

• observed signals �� , � � 1 ⋯ � into a “long” vector � 
• matrices �� , � � 1 ⋯ � into a “long” matrix � 
• echo amplitudes 
� , � � 1 ⋯ � into a “long” vector 
 

does not reveal any simple linear relationship between them, 
since complex amplitudes 
� change from burst to burst. 
Thus N-signal processing cannot be reduced to a longer 1-
signal processing of the form � � � � � ∙ 
. 

4.1 N-signal complex soft threshold variation 

 [3] and  [4] describe the Compressed Sensing block-soft 
thresholding operator applicable to a set of real signals � � ⋯ �� ⋯. 



(7) ���; !� � "#
 $0; 1 & �
‖
‖�

' ∙ � 

The same expression applies to complex signals. In the 
case ‖�‖� ) !, that is |���; !�| + 0, 

(8) ����; !� � $1 & ! ∙ �∑ �� ∙� ��∗�
�

�' ∙ ��, 

its complex derivatives  [6] [7] are 
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and the soft threshold differential is 
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4.2 N-signal CAMP (N-CAMP) 

N-signal CAMP is based on CAMP expressions  [2]  [5] 
applied to the � vectors of observed signals, while taking 
into account the fact that the non-zero entries are located at 
the same position index for all observed signals 

(13) ���,� � ∑ ���
�∗0��,�
�� � 
��,�
� 

(14) 
��,� � ������; 1�� 

(15) 
0��,� � ��� & ∑ ���

� 
��,��										& ∑ ���
� $������ � -��,�

� ; 1�� & ������; 1��'�
 

Let us consider the burst associated to the longest 
observed signal (assuming only one burst is associated to 
the longest observed signal), and let us denote #��� the 
maximum index value of the observed signal and ���� the 
associated burst index. Expression  (15) applied to index  #���  contains 

(16)  -����	,�
� � -����	,�

�,� ⋯ -����	,�
�,� ⋯ -����	,�

�,�  

For all burst indices but ����, the length of vector -�∙,�
�,� 

is smaller than #��� , so expression  (16) is not defined. In 
this expression, -����	,�

�  should be restricted to the only 

vector that gives sense, -����	,�
���	,�. More generally, 

expression  (15) should be based only on the variations 
associated to burst index �, -��,�

�,� � &���
�∗0��,�
�  [2] : 

(17) -��,�
� � �0, ⋯ ,0, &���

�∗0��,�
�, 0, ⋯ ,0� 

(18) 
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4.3 N-CAMP matrix notation 

Using matrix notations, we obtain the following set of 
equations: 

(20) ��,� � ���0�,�
� � 
�,�
� 

(21) 9�,� � 
�,�
 
� 

�

	 [term by term operations over index �] 
(22) :� � ��

 
� 
�

	 [term by term operations over index �] 
(23) 
�,� � ;#
�0; 1 & :����,�	 [term by term operations 

over index �] 

(24) 

0�,� � �� & ��,�� 
�,��
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4.4 Real signals, single burst 

In the case of real signals, and a single burst, this 
expression reduces to 

(25) 0� � � & ��� 
�� � <$��� ∘ ��� ∗' ∙ 1> ∘ 0�
� 

and, if all matrix coefficients have the same modulus, 

that is if ����� � �
!"


, where ?# is the number of elements 

of �, then this expression becomes 

(26) 0� � � & ��� 
�� � "	�
�

"

0�
� 

where ?�$
� is the number of non-zero elements of 
�. 

This expression differs a bit from those given by  [1] [2]. 
The reason is that these references suppose that the sum of 
the squared lines of matrix � are constant (exactly or 
statistically). In this paper we do not make such an 
hypothesis about matrix �, we rather only assume its 
columns are normalized  (5). 



4.5 Coherent Extractor 

As no restrictive hypothesis is made about matrix �, 
one can envisage to apply N-CAMP to radar signals already 
processed by standard coherent functions (Digital Beam 
Forming, Doppler Filtering, Pulse Compression). In this 
case, the processed signal is 

(27) �%� � @� ∙ �� � �%� ∙ 
� 

where @� is the processing matrix and �%� � @� ∙ �� . 

�%�	columns contain the set of filter responses to a 
given echo position. Their energies are maximum in the 
filter matched to echo position, lower in adjacent filters 
(main lobe edge), and much lower in farther filters (side 
lobes).  Figure 1 shows matrix �%� in the case where the 
observed signal is a set of Doppler filters, and target 
position is the radial speed, lying in A&2	C���

� ; 2	C���
� D 

where C���
�  is the ambiguous speed. 2 columns are 

highlighted, associated to 2 target speeds. The 

corresponding reduced matrix �%� �
 is shown on the right side 

of  Figure 1. 

             

Figure 1 : Multidiagonal matrix (full and reduced matrix) 

The squared sum of matrix �%� �
 lines corresponds to the 

energies obtained in all observed filters, that are “high” in 
filters matched to real echo positions, and lower in other 
positions. One sees it is important, in this case, not to 
assume the lines have a constant energy. 

Finally, as the lines close to echo positions are much 
more energetic than the lines “far away” from them, one 
probably misses only a small information amount not to 
observe those “far away” lines. In other words, one could 
process by the Compressed Sensing technique the only 
filters that detected, plus some adjacent filters. 

          

Figure 2 : Matrix reduced to its “lines of interest” 

Standard radar processing chains work in this way. 
They apply coherent filters, detect and transmit only the 
detected signals to the extractor. 

The interest to process only the pre-detected signals by 
a Compressed Sensing function is that it replaces a series of 
tests over hit energies (standard extraction) by an extraction 
method based on complex signals. In this case, Compressed 
Sensing acts as a Coherent Extractor. 

5. SIMULATION RESULTS 

N-CAMP expressions have been applied to radar signals 
received in one range bin during 5 successive bursts made of 
17, 19, 21, 23 and 25 pulses respectively. All the bursts have 

the same Doppler resolution, /� � �
�&�

� 10"/F. Their 

ambiguous speeds are 170, 190, 210, 230 and 250 m/s. 

N-CAMP algorithm is used to detect and to locate the 
echoes on the radial velocity range [-1000 m/s ; 1000 m/s] 
with a 5 m/s step (oversampling by a factor 2). Note that 
target radial speeds fit this grid. 

5.1 Scenario 1, targets separated by 1 ambiguous speed 

The following parameters were chosen for this first 
scenario. 

Target 1: 60 m/s, mean SNR = 50 dB, Swerling 2. 

Target 2: 275 m/s, mean SNR = 20 dB, Swerling 2. 

The speed difference between both targets is 215 m/s, 
that is close to one ambiguous speed. 

 

Figure 3 : input and estimated signals versus time 

The “weak” target is much lower than the “strong” one 
(-30 dB), so that the signal is almost constant inside each 
burst. The variations from burst to burst correspond to target 
fluctuations. [Remark: 1-pulse SNR is equal to 1-burst SNR 
divided by the number of pulses (about -13 dB).] 

In each burst, the estimated signal (red line) fits well the 
input one (green line). 

 

Figure 4 : matched filter output 

The matched filter is an unweighted filter on each burst, 
followed by a non-coherent integration over the 5 bursts 
[Remark. This corresponds to the first iteration of 
equations  (20) …  (24)]. 



The matched filter output essentially reveals the 
“strong” target. The weak target is deeply buried into its 
sidelobes, it is not visible in  Figure 4. 

 

Figure 5 : input and detected targets 

Green circles represent input targets, red dots represent 
detected targets. Both targets are detected and located at the 
right radial speeds. Estimated energies slightly differ from 
input ones. 

5.2 Scenario 2, 2 targets close each other 

For this scenario, the target radial speeds are set to 60 
m/s and 65 m/s respectively (other parameters are kept 
unchanged). The speed difference between both targets is 5 
m/s, that is half a speed resolution, in each burst. 

 

Figure 6 : input and detected SNR  

Both targets are detected and located at the right radial 
speeds. Estimated energies again slightly differ from input 
ones. 

5.3 Overall results analysis 

Both cases show that N-CAMP Compressed Sensing 
algorithm is able to correctly detect and estimate the target 
positions, including ambiguity solving. This is achieved 
either when the weak target is close to the strong one, or 
when both targets are separated by one ambiguity speed. 

Measured speeds are equal to actual speeds and 
measured SNR are close to actual SNR. 

6. CONCLUSION 

This paper describes a block-AMP algorithm that takes 
into account complex signals and “any” possible matrix. 
This algorithm has been applied to pulse to pulse radar 
signals. Simulation results demonstrate that the proposed 

strategy can achieve at the same time the functions of 
detection, clustering and plot measurement. 

Compared to a standard radar extractor, this processing 
scheme gains in sensitivity: 

• It detects on the basis of the full set of observed 
signals, in place of a burst by burst detection followed 
by a “K over N” process 

• It does not require the use of a weighting function to 
decrease the sidelobe level, since the proposed strategy 
can naturally take into account the presence of 
(possibly high) sidelobes. 

• Thanks to complex signals processing, small target 
detection is not affected by the presence of strong 
targets, even when ambiguity folding makes them 
close to each other in some bursts. 

To make it fully applicable to radar processing, this 
processing function should be enriched by an automatic grid 
adaptation to target position. Applied to signals that have 
already been processed by a coherent filtering function 
(Coherent Extractor), it should also take into account the 
noise measurements achieved by CFAR and clutter map 
functions. 
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