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Abstract—This work uses two performance metrics, target
detection and scene reconstruction performance, to compare
various estimation techniques that operate on compressed mea-
surements. Specifically we compare the performance of the com-
pressed matched filter, `1-regularized least squares, and complex
approximate message passing (CAMP), as well as a sparsified
matched filter estimate. We show that the compressed matched
filter provides the same or similar detection performance as
the other, more computationally expensive techniques, but at
the expense of poorer signal reconstruction error. However, by
sparsifying the matched filter estimate using a soft-thresholding
function, this estimate can achieve high reconstruction perfor-
mance as well, and at much lower computational cost.

Index Terms—Target Detection; Compressed Sensing

I. INTRODUCTION

Radar and similar remote sensing technologies are often
used to monitor the locations of targets within some field of
regard. In a common radar system design the signal is gathered
by the antenna, amplified by some radio frequency electronics,
processed by an analog and digital signal processing chain,
and finally converted into a discrete set of detections by an
algorithm that judges the presence or absence of a target at each
sample. An adaptive threshold will often be used to approach a
constant false alarm rate (CFAR). The resulting detections are
sent to a multi-target tracker, fire control processor, or other
higher-level data processor [1].

Compressed sensing (CS) techniques seem well-suited to this
task of radar signal processing and target detection. Typically
the number of targets is much smaller than the number of
possible target locations which introduces a natural sparsity.
And to achieve fine range resolution the radar system may
utilize wide waveform bandwidths that are challenging to
sample at the Nyquist rate. Several authors have noted these
and other advantages that could be gained by such an approach
[2], [3], [4]. Others have described techniques that could be
used in a CS radar implementation [5], [6].

Once such compressed measurements are acquired many
techniques can be employed to solve for the locations and
amplitudes of the targets. Templates for First-Order Convex
Solvers (TFOCS) is a convex optimization solution framework
that accommodates expressions like those that are frequently
generated in CS [7]. And Complex Approximate Message

Passing (CAMP) is an extension of successful AMP algorithms
to the complex domain found in radar signal processing. Anitori,
et al, made use of the fact that the interference in the CAMP
estimate is normally distributed to show a compressed sensing
CFAR algorithm [8].

Additionally, the matched filter, though commonly used in
the fully-sampled setting, also maximizes the signal-to-noise
ratio (SNR) of the estimate from compressed measurements.
And the computation complexity of the matched filter is
significantly lower than the aforementioned CS estimators.
We will compare these various estimation techniques with
particular emphasis on detection performance.

II. METHOD

A. Problem Formulation

Let the scene be a vector x ∈ Cn with only s non-zero
components that represent the targets in that scene. The radar
probes that scene using some transmitted waveform and makes
measurements of the returning signal at the Nyquist rate. Let
this process be modeled by the matrix S ∈ Cn×n. However the
measurements are corrupted by zero-mean circular complex
noise, n ∼ CN (0, 1√

SNR
). The measurements are then

y = Sx+ n.

The compressed measurements z ∈ Cm are made by
applying some compression operator, C ∈ Cm×n, to the fully-
sampled data. We model this as

z = Cy.

The combined sensing operator A = CS ∈ Cm×n. Call the
ratio n/m the under-sampling factor (USF).

B. Solution Techniques

The matched filter estimator is calculated by applying the
conjugate transpose of the complete sensing operator

x̂MF = AHz.

Next, define the soft thresholding function as

g(h, ρ) =

{
h− ρ h

|h| , |h| > ρ

0, otherwise



and let ρ∗ be the 90th percentile of the entries in |x̂MF |. Then
the matched filter-soft thresholding solution is

x̂MFST = g(x̂MF , ρ
∗).

The `1-regularized least squares estimate is the one that
solves the following inequality:

x̂cs = argmin
x
||z−CSx||22 + τ ||x||1 .

We solve this using the TFOC package [9].
Finally we compute the CAMP estimate using our own

implementation of the algorithm described in [8], [10]. This
iterative algorithm also finds a solution that balances fidelity
to the measured data with a sparsity condition. The code is
structured to produce two outputs. One solution consists of a
sparse target component plus white noise. The second solution
is a soft-thresholded version of that noisy solution that leaves
(ideally) just the sparse component. We compute both solutions
but only show the first one because it provides better detection
performance.

C. Evaluation Criteria

In an operational radar system, the statistics of the interfer-
ence would be estimated to set a detection threshold. The CFAR
detector uses a window around the cell under test to estimate
those statistics locally. However, to reduce the dependence
of our results on this local estimation we use the following
oracle-like detection criteria.

For a given probability of false alarm, PFA, a detection
threshold can be calculated. Assume a true scene x that has
n elements and s targets at locations specified by S and an
estimate of that scene x̂. If x̂s contains all the values of |x̂|
softed in increasing order then the detection threshold D =
x̂s(dPFAne). Using this detection threshold the probability of
detection is the fraction of elements of the estimate at the true
target locations that have magnitude greater than the threshold:

PD = frac (|x̂(S)| > D) .

And, independent of any detection thresholds or criteria, the
RSS reconstruction error is defined as

ERSS =
||x− x̂||2
||x||2

.

D. Tested Parameters

To specify the problem let entries in C be independent and
identically distributed (IID), taking on the values ± 1√

n
with

equal probability. Similarly let entries in S be IID taking the
values ± 1√

m
with equal probability. These sensing matrices

exhibit very low mutual coherence and allow the CS algorithms
to work within design assumptions. And let n = 2000 and
s = 4. These 4 targets are placed randomly in the scene and
have unit amplitude and zero phase.

 

 

Interference Distribution
Target + Interference Distribution
Detection Threshold
Probability of False Alarm
1 − Probability of Detection

Fig. 1: This plot illustrates the relationship between probability
of detection and probability of false alarm for a deterministic
signal in Gaussian interference.

E. Detection Theoretic Performance

In detection theory a measurement consists of stochastic
interference and perhaps some deterministic non-zero signal.
Thus the goal is to develop a criterion to determine which of two
hypotheses is obserbed: interference or interfernce plus signal.
For a real signal in Gaussian noise, the relationship between
SNR, PD, and PFA can be calculated using the definitions of
the normal distribution. This calculation is illustrated in Figure
1.

III. RESULTS

We performed 100 random trials of the described experiment
at each (SNR, USF) pair and show the average results over
those trials. Figures 2 and 3 show the average detection and
reconstruction performance, respectively, of the matched filter
solution over the span of tested parameters. The easiest problem
posed is that in the bottom right corner where the most samples
are taken and the signal is the strongest. Thus it is unsurprising
that performance in this region is very good.

The results in Figure 2 agree rather well with the theoretical
detection curve illustrated in but start to show difference for
higher levels of undersampling. This curve assumes that the
Gaussian interference whereas the interference in the estimate
is not Gaussian, even though it may be approximated as such.
Work in this area continues to rigourously characterize the
detection behavior at higher levels of undersampling.

These results and similar results for the other solution
techniques can be summarized by plotting the performance
frontiers at which the estimate drops below some specified
threshold. These frontiers are show in Figure 4 and 5. Notably,
the detection performance of all the estimators is comparable.
In contrast, the sparsity-favoring `1-regularized least squares
solution gives a better reconstruction error. Note, also, that
the simple addition of the soft-thresholding operator reduces
the reconstruction error significantly, and a more aggressively
applied threshold could reduce it further.
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Fig. 2: Matched filter probability of detection (PD) is shown
over the input parameter space. Blue indicates better perfor-
mance. This plot uses PFA = .01. The black line superimposed
on the graph shows the theoretical boundary for a PD = .9.
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Fig. 3: Matched filter reconstruction error (ERSS) is shown over
the input parameter space. Blue indicates better performance.

Finally, we measure the average execution time of the
reconstruction methods running in MATLAB on a desktop
computer with an Intel Core i5 processor and 16 GB of memory.
The matched filter and soft thresholded matched filter both
execute quickly. The `1-regularized least squares (using the
TFOCS implementation) executes around 20× more slowly.
And, our implementation of CAMP is much slower than either
of those two. With a more-refined stopping criterion, this time
could likely be reduced significantly.

IV. CONCLUSION

Although the use of sparsity-favoring solution techniques
can produce substantial gains in the signal reconstruction error,
the detection performance is largely a function of the SNR and
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Matched Filter
Matched Filter + Soft Threshold
L1−Reg. Least Squares (TFOCS)
CAMP

Fig. 4: A comparison of detection (PD) performance frontiers
shows that all these techniques achieve approximately equal
detection performance. Curves that lie higher and further to the
left indicate better performance. By this measure the matched
filter and the sparsified matched filter perform identically, thus
the red and the green curve lies directly on top of the red
curve.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

SNR (dB)

U
nd

er
−S

am
pl

in
g 

F
ac

to
r

Frontier for RSS Err < 1.0

 

 

Matched Filter
Matched Filter + Soft Threshold
L1−Reg. Least Squares (TFOCS)
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Fig. 5: A comparison of reconstruction error (ERSS) perfor-
mance frontiers shows that the sparsity-favoring techniques
achieve better reconstruction error of this sparse signal. Curves
that lie higher and further to the left indicate better performance.

Estimator Mean Duration (s) Standard Deviation (s)
Matched Filter 3.0× 10−3 3.0× 10−3

Matched Filter + Soft Threshold 3.3× 10−3 5.4× 10−2

`1-Regularized Least Squares 6.4× 10−2 3.0× 10−3

TFOCS 3.0 4.3

TABLE I: Summary statistics for execution time of the tested
algorithms over all input parameter combinations are given.



USF and independent of solution technique. Future work will
compare this detection performance to those derived predictions
in [11], [12].
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