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Summary

This work compares the performance of the four different
estimators:

1 Compressed matched filter

2 Soft-thresholded compressed matched filter

3 `1-regularized least squares

4 Complex approximate message passing (CAMP)

We do so over a wide range of signal-to-noise ratio and
under-sampling factor using two different performance metrics:

1 Scene reconstruction error

2 Target detection probability
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Radar System Detection

Common radar application: monitor the locations of targets within
some field of regard.

Path of the signal includes:

1 Antenna
2 RF electronics
3 Analog and digital signal processing
4 Detector

The resulting detections are sent to a multi-target tracker, fire
control processor, or other higher-level data processor
[Richards, 2005]
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Prior Work on CS and Radar

Compressed sensing (CS) techniques seem well-suited to this task
of radar signal processing and target detection:

Small number of targets relative to possible target locations

Fine range resolution the radar system requires wide waveform
bandwidths: challenging to sample at the Nyquist rate.

Prior work on the topic has shown promise as well:

Several authors have noted these and other advantages that
could be gained by such an approach
[Strohmer and Friedlander, 2011],
[Herman and Strohmer, 2009],
[Chen and Vaidyanathan, 2008].

Others have described techniques that could be used in a CS
radar implementation [Tropp et al., 2010],
[Baransky et al., 2012].
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Fully-Sampled Measurements

Define the sensing problem as follows:

The scene is described by x ∈ Cn with only s non-zero
components at locations S that represent the targets in that
scene.

The radar probes that scene using some transmitted waveform
and makes measurements of the returning signal at the
Nyquist rate. Let this process be modeled by the matrix
S ∈ Cn×n.

However the measurements are corrupted by zero-mean
circular complex noise, n ∼ CN (0, 1√

SNR
).

The measurements are then:

y = Sx+ n.
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Compressed Measurements

The compressed measurements z ∈ Cm are made by applying some
compression operator, C ∈ Cm×n, to the fully-sampled data. We
model this as

z = Cy.

The combined sensing operator A = CS ∈ Cm×n.

Call the ratio n/m the under-sampling factor (USF).
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Tested Parameters

Want to choose sensing matrices C and S that exhibit very low
mutual coherence and allow the CS algorithms to work within
design assumptions.

Entries in C be independent and identically distributed (IID),
taking on the values ± 1√

n
with equal probability

Entries in S be IID taking the values ± 1√
m

with equal

probability

Additionally, let

n = 2000

s = 4, these 4 targets are placed randomly in the scene and
have unit amplitude and zero phase
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Matched Filter Estimate

The matched filter estimator is calculated by applying the
conjugate transpose of the complete sensing operator

x̂MF = AHz.
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Matched Filter + Soft Thresholding Estimate

Define the soft thresholding function as

g(h, ρ) =

{
h− ρ h

|h| , |h| > ρ

0, otherwise

and let ρ∗ be the 90th percentile of the entries in |x̂MF |. Then the
matched filter-soft thresholding solution is

x̂MFST = g(x̂MF , ρ
∗).
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`1-Regularized Least Squares Estimate

The `1-regularized least squares estimate is the one that solves the
following inequality:

x̂CS = argmin
x
||z−Ax||22 + λ ||x||1 .

We solve this using the TFOC package [Becker et al., 2012] with
λ = .7.
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CAMP Estimate

Finally we compute the CAMP estimate using our own
implementation of the algorithm described in [Anitori et al., 2013],
[Maleki et al., 2013].

Iterative algorithm finds a solution that balances fidelity to the
measured data with a sparsity condition.

The code is structured to produce two outputs

1 A sparse target component plus white noise.
2 A soft-thresholded version of that noisy solution that leaves

(ideally) just the sparse component.

We compute both solutions but only show the first one
because it provides better detection performance.
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Testing Methodology

We performed the following analysis:

Establish a grid of (SNR, USF) pairs

SNR ranging from 0 to 40 dB
USF ranging from 0 to 50

At each point in the grid perform 100 trials in which new
random target scene, noise vector, and sensing matrices are
generated and the target scene is estimated using the four
estimate techniques described

Calculate average performance at each point
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Performance Metrics: Norm Reconstruction Error

And, independent of any detection thresholds or criteria, the norm
reconstruction error is defined as

Enorm =
||x− x̂||2
||x||2

.
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Performance Metrics: Probability of Detection

For a given probability of false alarm, PFA, a detection threshold
can be calculated:

The true scene x that has n elements and s targets at
locations specified by S and an estimate of that scene x̂

And x̂s contains all the values of |x̂| sorted in increasing order
then the detection threshold D = x̂s(dPFAne)

Using this detection threshold the probability of detection is the
fraction of elements of the estimate at the true target locations
that have magnitude greater than the threshold:

PD = frac (|x̂(S)| > D)
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Norm Error Matrix
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Figure: Matched filter reconstruction error (Enorm) is shown over the
input parameter space. Blue indicates better performance.
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Norm Error Frontiers
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Figure: A comparison of reconstruction error (Enorm) performance
frontiers shows that the sparsity-favoring techniques achieve better
reconstruction error of this sparse signal. Curves that lie higher and
further to the left indicate better performance.
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Probability of Detection Matrix

Compressed Matched Filter Probability of Detection
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Figure: Matched filter probability of detection (PD) is shown over the
input parameter space. Blue indicates better performance. This plot uses
PFA = .01. The black line superimposed on the graph shows the
theoretical boundary for a PD = .9.
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Probability of Detection Frontiers
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Figure: A comparison of detection (PD) performance frontiers shows that
all these techniques achieve approximately equal detection performance.
Curves that lie higher and further to the left indicate better performance.
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Execution Time

Estimator Mean Duration (s) Standard Deviation (s)

Matched Filter 3.0× 10−3 3.0× 10−3

Matched Filter + Soft Threshold 3.3× 10−3 3.0× 10−3

`1-Regularized Least Squares 6.4× 10−2 5.4× 10−2

CAMP 3.0 4.3

Table: Summary statistics for execution time of the tested algorithms
over all input parameter combinations are given.
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Theoretical Detection Performance
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Figure: This plot illustrates the relationship between probability of
detection and probability of false alarm for a deterministic signal in
Gaussian interference.

20 of 21



Outline

1 Introduction

2 Problem Formulation

3 Estimators

4 Testing & Results

5 Conclusion

20 of 21



Conclusion

This work:

Evaluates the ability of different algorithms to detect targets
from compressive measurements over a wide range of SNR
and USF

Shows that the sparsity-favoring solutions produce results with
better norm error
Shows that the matched filter performs as well as more
computationally expensive algorithms at detecting targets
Encourages researchers to report results in terms of detection
statistics
Points to future work to

Express the random variable distributions for target present /
absent for the compressed matched filter estimator and thereby
calculate theoretical PD and PFA

Derive CS recovery algorithm thresholds in terms of PD and
PFA
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