

Dictionary Adaptation in Sparse Recovery Based on Different Types of Coherence

Henning Zörlein, Faisal Akram, Martin Bossert

17. September - CoSeRa 2013

Henning Zörlein, Faisal Akram, Martin Bossert Dict. Adapt. in SR Based on Different Types of Coherence 1

NACHRICHTENTECHNIk Umiværsittätt Ulim

Outline

2 Best Antipodal Spherical Codes for Coherence Optimization

On the second second

On the second second

Sparse Recovery in Signal Acquisition

Measurement of a Signal

Signal $\boldsymbol{x} \in \mathbb{R}^N$ is acquired by measurement matrix $\boldsymbol{\Phi} \in \mathbb{R}^{M imes N}$:

$$y = \Phi x$$
 with $M < N$.

Sparse Representation

Signals can be sparsely represented with a dictionary $\Psi \in \mathbb{R}^{N \times L}$:

 $\boldsymbol{x} = \boldsymbol{\Psi} \boldsymbol{\alpha}$ with $N \leq L$.

Under-determined System of Linear Equations with Sparse Solution

Sensing matrix is obtained by $\mathbf{\Phi}\mathbf{\Psi} = \mathbf{A} \in \mathbb{R}^{M imes L}$

$$y = \Phi \Psi \alpha = A \alpha$$

Henning Zörlein, Faisal Akram, Martin Bossert Dict. Adapt. in SR Based on Different Types of Coherence 3

Sparse Recovery in Signal Acquisition

Measurement of a Signal

Signal $\boldsymbol{x} \in \mathbb{R}^N$ is acquired by measurement matrix $\boldsymbol{\Phi} \in \mathbb{R}^{M imes N}$:

$$y = \Phi x$$
 with $M < N$.

Sparse Representation

Signals can be sparsely represented with a dictionary $\Psi \in \mathbb{R}^{N imes L}$:

$$x = \Psi \alpha$$
 with $N \leq L$.

Under-determined System of Linear Equations with Sparse Solution

Sensing matrix is obtained by $\mathbf{\Phi} \mathbf{\Psi} = \mathbf{A} \in \mathbb{R}^{M imes L}$

$$y = \Phi \Psi \alpha = A \alpha$$

Sparse Recovery in Signal Acquisition

Measurement of a Signal

Signal $\boldsymbol{x} \in \mathbb{R}^N$ is acquired by measurement matrix $\boldsymbol{\Phi} \in \mathbb{R}^{M imes N}$:

$$y = \Phi x$$
 with $M < N$.

Sparse Representation

Signals can be sparsely represented with a dictionary $\Psi \in \mathbb{R}^{N imes L}$:

$$\boldsymbol{x} = \boldsymbol{\Psi} \boldsymbol{\alpha}$$
 with $N \leq L$.

Under-determined System of Linear Equations with Sparse Solution

Sensing matrix is obtained by $\mathbf{\Phi} \mathbf{\Psi} = \mathbf{A} \in \mathbb{R}^{M imes L}$

$$y = \Phi \Psi lpha = A lpha$$

Henning Zörlein, Faisal Akram, Martin Bossert Dict. Adapt. in SR Based on Different Types of Coherence 3

Coherence-Based Optimization Criteria

Column Coherence of $oldsymbol{A}$

$$\mu(\boldsymbol{A}) = \max_{i \neq j} \frac{|\langle \boldsymbol{a}_i, \boldsymbol{a}_j \rangle|}{\|\boldsymbol{a}_i\|_2 \|\boldsymbol{a}_j\|_2},$$

where a_i is the *i*-th column of A.

- ullet Often used where x is sparse itself $(\Psi={f I})$
- Several approaches optimize this property e.g. [Elad 2007]

Row Coherence of Φ with respect to Columns of Ψ

$$\mu(\mathbf{\Phi}, \mathbf{\Psi}) = \max_{i,j} \frac{|\langle \boldsymbol{\phi}_i, \boldsymbol{\psi}_j \rangle|}{\|\boldsymbol{\phi}_i\|_2 \|\boldsymbol{\psi}_j\|_2},$$

where ϕ_i is the *i*-th row of Φ and ψ_j is the *j*-th column of Ψ .

Motivated by measurement process

Coherence-Based Optimization Criteria

Column Coherence of $oldsymbol{A}$

$$\mu(\boldsymbol{A}) = \max_{i \neq j} \frac{|\langle \boldsymbol{a}_i, \boldsymbol{a}_j \rangle|}{\|\boldsymbol{a}_i\|_2 \|\boldsymbol{a}_j\|_2},$$

where a_i is the *i*-th column of A.

- ullet Often used where x is sparse itself $(\Psi = \mathbf{I})$
- Several approaches optimize this property e.g. [Elad 2007]

Row Coherence of Φ with respect to Columns of Ψ

$$\mu(\boldsymbol{\Phi}, \boldsymbol{\Psi}) = \max_{i,j} \frac{|\langle \boldsymbol{\phi}_i, \boldsymbol{\psi}_j \rangle|}{\|\boldsymbol{\phi}_i\|_2 \|\boldsymbol{\psi}_j\|_2},$$

where ϕ_i is the *i*-th row of Φ and ψ_j is the *j*-th column of Ψ .

Motivated by measurement process

Denotation

$\Omega_{\mathcal{N}}(0,1)$	Unit sphere centered at the origin ${f 0}$ of $\mathbb{R}^\mathcal{N}.$
$C_s(\mathcal{N},\mathcal{M})$	A spherical code is a
$= \{oldsymbol{s}_m\}_{m=1}^{\mathcal{M}}$	set of $\mathcal M$ points $oldsymbol{s}_m$ placed on $\Omega_\mathcal N(\mathbf 0,1).$
$C_{ m bs}(\mathcal{N},\mathcal{M})$	Best spherical codes (BSC) maximize the minimal Euclidean (or angular) distance $d_{ml} = s_m - s_l $ and minimize the maximal inner product of code words.
$C_{ m bas}(\mathcal{N},\mathcal{M})$	For best antipodal spherical codes (BASC), the antipodal of each code word is also a code word: $s_m \in C_{\text{bas}}(\mathcal{N}, \mathcal{M}) \iff -s_m \in C_{\text{bas}}(\mathcal{N}, \mathcal{M})$ Thus, maximal coherence is minimized.
$\underline{u} = \frac{u}{ u }$	Underlined denotation of normalized vectors.

General Ideas

Generating BSC

- Points of a $C_s(\mathcal{N}, \mathcal{M})$ can be considered as charged particles acting in some field of repelling forces.
- Particles will move until total potential of system approaches some local minimum.

Optimize Coherence with BASC

- Consider also the antipodals of $C_s(\mathcal{N}, \mathcal{M})$.
- Obtain $C_{\rm bas}(\mathcal{N},\mathcal{M})$ by generating BSC (updating antipodals).

Optimize $\mu(\mathbf{\Phi}, \mathbf{\Psi})$ with BASC

- ullet Points corresponding to Ψ and their antipodals are fixed.
- Particles of Φ are free to be moved (updating antipodals).

General Ideas

Generating BSC

- Points of a $C_s(\mathcal{N}, \mathcal{M})$ can be considered as charged particles acting in some field of repelling forces.
- Particles will move until total potential of system approaches some local minimum.

Optimize Coherence with BASC

- Consider also the antipodals of $C_s(\mathcal{N}, \mathcal{M})$.
- Obtain $C_{\text{bas}}(\mathcal{N}, \mathcal{M})$ by generating BSC (updating antipodals).

Optimize $\mu({f \Phi},{f \Psi})$ with BASC

- \bullet Points corresponding to Ψ and their antipodals are fixed.
- ${\scriptstyle \bullet}$ Particles of ${\scriptstyle \Phi}$ are free to be moved (updating antipodals).

General Ideas

Generating BSC

- Points of a $C_s(\mathcal{N}, \mathcal{M})$ can be considered as charged particles acting in some field of repelling forces.
- Particles will move until total potential of system approaches some local minimum.

Optimize Coherence with BASC

- Consider also the antipodals of $C_s(\mathcal{N}, \mathcal{M})$.
- Obtain $C_{\text{bas}}(\mathcal{N}, \mathcal{M})$ by generating BSC (updating antipodals).

Optimize $\mu({oldsymbol \Phi}, {oldsymbol \Psi})$ with BASC

- ullet Points corresponding to Ψ and their antipodals are fixed.
- ullet Particles of Φ are free to be moved (updating antipodals).

Best Antipodal Spherical Codes Generating BSC

Generalized Potential Function

$$g(C_s(\mathcal{N},\mathcal{M})) = \sum_{m < l} |\boldsymbol{s}_m - \boldsymbol{s}_l|^{-(\nu-2)} \quad \text{with} \quad \nu \in \mathbb{N} \ (\nu > 2),$$

attains a global minimum by a BSC if $\nu \rightarrow \infty.$

Lagrangian multipliers

A global minimum can be expressed by an equilibrium:

$$\left\{\underline{s}_m = \sum_{l \neq m} \frac{\underline{s}_m - \underline{s}_l}{|\underline{s}_m - \underline{s}_l|^{\nu}}\right.$$

Henning Zörlein, Faisal Akram, Martin Bossert Dict. Adapt. in SR Based on Different Types of Coherence 8

Best Antipodal Spherical Codes Generating BSC

Generalized Potential Function

$$g(C_s(\mathcal{N},\mathcal{M})) = \sum_{m < l} |\boldsymbol{s}_m - \boldsymbol{s}_l|^{-(\nu-2)} \quad \text{with} \quad \nu \in \mathbb{N} \ (\nu > 2),$$

attains a global minimum by a BSC if $\nu \rightarrow \infty.$

Lagrangian multipliers

A global minimum can be expressed by an equilibrium:

$$\left\{\underline{s}_m = \sum_{\underline{l \neq m}} \frac{\underline{s}_m - \underline{s}_l}{|\underline{s}_m - \underline{s}_l|^{\nu}} \right\}_{m=1}^{\mathcal{M}}$$

Best Antipodal Spherical Codes Generating BSC

Generalized Potential Function

$$g(C_s(\mathcal{N},\mathcal{M})) = \sum_{m < l} |\boldsymbol{s}_m - \boldsymbol{s}_l|^{-(\nu-2)} \quad \text{with} \quad \nu \in \mathbb{N} \ (\nu > 2),$$

attains a global minimum by a BSC if $\nu \rightarrow \infty.$

Lagrangian multipliers

A global minimum can be expressed by an equilibrium:

$$\left\{ \underline{s}_m = \sum_{\underline{l \neq m}} \frac{\underline{s}_m - \underline{s}_l}{|\underline{s}_m - \underline{s}_l|^{
u}} = \sum_{\underline{l \neq m}} \delta_{ml} = \underline{f}_m
ight\}_{m=1}^{\mathcal{M}}$$

Institute of Communications Engineering

Best Antipodal Spherical Codes

Generating BSC - Illustration

Institute of Communications Engineering

Best Antipodal Spherical Codes

Generating BSC - The Iterative Process

Mapping

$$oldsymbol{P}[C_s(\mathcal{N},\mathcal{M})] = \left\{ \underline{\underline{s}_m} + \alpha \underline{\underline{f}}_m
ight\}_{m=1}^{\mathcal{M}} \quad ext{with} \quad \alpha \in \mathbb{R}$$

Iterative Process for Coherence Optimization

$$C_s(\mathcal{N},\mathcal{M})^{(k+1)} = \boldsymbol{P}(C_s(\mathcal{N},\mathcal{M})^{(k)}); \ k = 0, 1, \dots$$

converges for a small enough "damping factor" α .

Optimization Strategy

For increasing ν , the iterative process is continuously applied.

Institute of Communications Engineering

Best Antipodal Spherical Codes

Generating BSC - The Iterative Process

Mapping

$$oldsymbol{P}[C_s(\mathcal{N},\mathcal{M})] = \left\{ \underline{\underline{s}_m} + \alpha \underline{\underline{f}_m}
ight\}_{m=1}^{\mathcal{M}} \quad ext{with} \quad \alpha \in \mathbb{R}$$

Iterative Process for Coherence Optimization

$$C_s(\mathcal{N},\mathcal{M})^{(k+1)} = \boldsymbol{P}(C_s(\mathcal{N},\mathcal{M})^{(k)})); \ k = 0, 1, \dots$$

converges for a small enough "damping factor" α .

Optimization Strategy

For increasing ν , the iterative process is continuously applied.

Institute of Communications Engineering

Best Antipodal Spherical Codes

Generating BSC - The Iterative Process

Mapping

$$oldsymbol{P}[C_s(\mathcal{N},\mathcal{M})] = \left\{ \underline{\underline{s}_m} + \alpha \underline{\underline{f}_m}
ight\}_{m=1}^{\mathcal{M}} \quad ext{with} \quad \alpha \in \mathbb{R}$$

Iterative Process for Coherence Optimization

$$C_s(\mathcal{N},\mathcal{M})^{(k+1)} = \boldsymbol{P}(C_s(\mathcal{N},\mathcal{M})^{(k)})); \ k = 0, 1, \dots$$

converges for a small enough "damping factor" α .

Optimization Strategy

For increasing ν , the iterative process is continuously applied.

Generating BSC - Algorithm

procedure BSC-based Min-Distance Optimization(\mathcal{N}, \mathcal{M}) $C_s \leftarrow \text{spherical seed}$ ▷ Random spherical code while $\nu < \nu_{max}$ do while $i < i_{max}$ AND FixedPointFound = false do for m = 1 to \mathcal{M} do $\boldsymbol{f}_m \leftarrow \underline{\boldsymbol{s}}_m = \sum_{l \neq m} \frac{\underline{\boldsymbol{s}}_m - \underline{\boldsymbol{s}}_l}{|\underline{\boldsymbol{s}}_m - \underline{\boldsymbol{s}}_l|^{
u}}$ Calculate generalized force end for $\left\{ \boldsymbol{s}_{m} \right\}_{m=1}^{\mathcal{M}} \leftarrow \left\{ \underline{\boldsymbol{s}}_{m} + \alpha \boldsymbol{f}_{m} \right\}^{\mathcal{M}}$ ▷ Apply force end while end while return $\{s_m\}_{m=1}^{\mathcal{M}}$ end procedure

Coherence Optimization

Generating BASC - Algorithm

Coherence Optimization

Optimizing $\mu(oldsymbol{\Phi},oldsymbol{\Psi})$ - Algorithm

procedure BASC-BASED $\mu(\Phi, \Psi)$ OPTIMIZATION $(\Psi, \mathcal{N}, \mathcal{M})$ $C_s \leftarrow \text{spherical seed}$ ▷ Random spherical code $C_{as} \leftarrow \begin{bmatrix} C_s & -C_s & \Psi & -\Psi \end{bmatrix}$ Antipodal spherical code while $\nu < \nu_{max}$ do while $i < i_{max}$ AND FixedPointFound = false do for m = 1 to \mathcal{M} do $f_m \gets \underline{s}_m = \sum_{l \neq m} \quad \frac{\underline{s}_m - \underline{s}_l}{|\underline{s}_m - \underline{s}_l|^\nu} \quad \triangleright \text{ Calculate generalized force}$ $l \neq m + M$ end for $\{s_m\}_{m=1}^{\mathcal{M}} \leftarrow \left\{\underline{\underline{s}_m + \alpha \underline{f}_m}\right\}_{m=1}^{\mathcal{M}}$ ▷ Apply force $\{\boldsymbol{s}_m\}_{m=1+M}^{2\mathcal{M}} \leftarrow \{-\boldsymbol{s}_m\}_{m=1}^{\frac{M}{2}}$ \triangleright Update antipodals end while end while return $\{\underline{s}_m\}_{m=1}^{\mathcal{M}}$ ▷ Return non-antipodals end procedure

Outline

Introduction

2 Best Antipodal Spherical Codes for Coherence Optimization

Verify Success of Optimizations - $\mu(\mathbf{\Phi}, \mathbf{\Psi})$

Coherence distribution of $[\Phi^T, \Psi]$ for M = 30, N = 200 and L = 400.

Verify Success of Optimizations - $\mu({m \Phi},{m \Psi})$ - 2

Coherence distribution of $[\Phi^T, \Psi]$ for M = 30, N = 200 and L = 400. Intra column coherence of Ψ is removed.

Henning Zörlein, Faisal Akram, Martin Bossert Dict. Adapt. in SR Based on Different Types of Coherence 16

Verify Success of Optimizations - $\mu(A)$

Coherence distribution of A for M = 30, N = 200 and L = 400.

Evaluation of Effectiveness

Frequency of exact reconstruction with $\Psi_{[I,DCT]}$ for M = 30, N = 200 and L = 400. OMP is used for dashed lines.

Evaluation of Effectiveness

Frequency of exact reconstruction with $\Psi_{[I,DCT]}$ for M = 30, N = 200 and L = 400. OMP is used for dashed lines, BP for solid lines.

Outline

Introduction

2 Best Antipodal Spherical Codes for Coherence Optimization

Conclusion

Contribution

- ${\ensuremath{\bullet}}$ Proposed a method to optimize $\mu({\ensuremath{\Phi}}, {\ensuremath{\Psi}})$ using BASC
- Compared the effectiveness of optimization strategies

- Both optimization criteria lead to improved results.
- Algorithms relying on $\mu(A)$ favor the optimization of $\mu(A)$.
- Optimization of $\mu(\mathbf{\Phi},\mathbf{\Psi})$ may be considered elsewise.

Conclusion

Contribution

- ${\ensuremath{\bullet}}$ Proposed a method to optimize $\mu({\ensuremath{\Phi}}, {\ensuremath{\Psi}})$ using BASC
- Compared the effectiveness of optimization strategies

- Both optimization criteria lead to improved results.
- Algorithms relying on $\mu(A)$ favor the optimization of $\mu(A)$.
- Optimization of $\mu({\bf \Phi}, {\bf \Psi})$ may be considered elsewise.

Thank you for your attention.

THE END

Do you have any additional questions?

Henning Zörlein, Faisal Akram, Martin Bossert Dict. Adapt. in SR Based on Different Types of Coherence 21