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In many applications of compressive sensing, the dictionary

providing the sparse description is partially or entirely un-

known. It has been shown that dictionary learning algorithms

are able to estimate the basis vectors from a set of training

samples. In some applications the dictionary is multidimen-

sional, e.g., when estimating jointly azimuth and elevation in

a 2-D direction of arrival (DOA) estimation context. In this

paper we show that existing dictionary learning algorithms

can be extended to exploit this structure, thereby providing a

more accurate estimate of the dictionary. As an example we

choose the well-known K-SVD algorithm [1], propose a tensor

extension and show its improved performance numerically.

Consider a sparse recovery problem given by

Y = A · S +N , (1)

where Y ∈ C
M×T denotes a set of T subsequent observations

from M channels, A ∈ C
M×N is the dictionary containing N

atoms, S ∈ C
N×T is a sparse matrix which contains at most

K non-zero elements per column, and N ∈ C
M×N models

the additive measurement noise.

In some applications the dictionary obeys a multidimen-

sional structure, which allows us to write it as

A = A1 ⊗A2 (2)

where Ak ∈ C
Mk×Nk denotes the dictionaries for the separate

dimensions k = 1, 2 and ⊗ is the Kronecker product. An

example for (2) is 2-D direction of arrival (DOA) estimation

using a 2-D separable antenna array such as a uniform

rectangular array (URA) [2].

Depending on the application, the actual dictionary may

be entirely unknown (as it is common in image processing)

or partially unknown (as in DOA estimation where the true

source locations are not exactly on the grid points we chose

for discretizing the array manifold).

Existing dictionary learning algorithms estimate A and S

jointly from Y by exploiting the fact that S is sparse. A

well-known example is given by the K-SVD algorithm [1].

It alternates between two steps. Firstly, a sparse recovery

algorithm is used to recover the support set in S. Given

the active support set, all active atoms are then updated

sequentially. To update one atom, the contribution from all

other atoms is subtracted. Since the remaining matrix is ideally

rank-one, the best approximation for the current atom is found

by a rank-one truncated SVD.

This idea can readily be extended to multiple dimensions.

After subtracting all active atoms but one, the remaining
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Fig. 1. Convergence behavior of K-SVD against K-HOSVD

matrix is given by

Y ≈ (a1(i1)⊗ a2(i2)) · s(i)
T, (3)

where an(in) is the in-th column of An, s(i)T is the i-th row

of S, and i = (i1−1) ·M2+ i2. Reshaping the M ×T matrix

Y into an M1 ×M2 × T tensor Y , (3) becomes

Y ≈ a1(i1) ◦ a2(i2) ◦ s(i), (4)

where ◦ denotes the outer (tensor) product. Equation (4)

shows that we have reformulated the original rank-one matrix

approximation problem into a rank-one tensor approximation

problem. Finding the optimal rank-one approximation of a

tensor in general requires iterative algorithms. However, we

apply the low-complexity closed-form solution given by the

truncated Higher-Order SVD (HOSVD), since it already pro-

vides a very good estimate for moderate to high SNRs.

In Figure 1 we present a numerical example where we

trained a random dictionary for M1 = M2 = 4 and N1 =
N2 = 6 and a sparsity of K = 3 based on T = 100 training

samples at an SNR of 30 dB. We show fitting error defined

as
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where ‖·‖

F
denotes the Frobenius

norm. We observe that the K-HOSVD converges faster and

yields a better fit. This is due to the fact that the structure of

the dictionary is explicitly exploited.
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