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Motivation 
 Compressed Sensing 

 allows lossless acquisition of signals at a sampling rate below Nyquist 

 perfect knowledge of the dictionary is usually assumed 

 in practice, the dictionary may be unknown 

 partially (e.g., calibration, model mismatch, grid offset) 

 completely (e.g., “typical” structures in image coding) 

 State of the art 

 two of the most popular fundamental approaches: MOD [EAH00], K-SVD [AEB06] 

 many variations, e.g., SimCO, RLS-DA, discriminative K-SVD, … 

 

 

 

 Our contribution 

 tensors formulation for separable 2-D sparse recovery problems  

 extension of MOD and K-SVD, improved algorithms 

Dictionary  

learning 

[EAH00] K. Engan, S. O. Aase, and J. H. Husøy, “Multi-frame compression: Theory and design,” EURASIP Signal 

Process., vol. 80, no. 10, pp. 2121–2140, 2000. 

[AEB06] M. Aharon, M. Elad, and A. Bruckstein, “The K-SVD: An algorithm for designing of overcomplete dictionaries 

for sparse representation,” IEEE Trans. on Signal Processing, vol. 54, no. 11, pp. 4311–4322, 2006. 
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Outline 
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 1-D noisy sparse recovery problem 

 
 

 

 

 

 

 
 

where 

 

 

 

 2-D sparse recovery problem 

 if the manifold is separable (e.g., 2-D DOAE with a uniform rectangular array or 

joint DOA/DOD) and a separable 2-D sampling grid is chosen, then 

 

 
 

Data model: 1-D sparse recovery problem 

observations 

overcomplete dictionary 

sparse coefficient matrix 

additive measurement noise 

M < N < T 

= + 
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Multilinear structure 

 The 2-D model possesses an interesting multilinear structure  

M1 x N1 M2 x N2 

N x T 

M x T 

M1 x M2 x T 
N1 x N2 x T 

1 2 

Tucker-2 decomposition 

with a sparse core tensor 
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 Alternating Optimization (“Method of optimal directions (MOD)”) 

 

 

 

 

 

 

 

 

 

 

 

Dictionary Learning via MOD 

= + 

Given A 

Find S 

Given S 

Find A 

noisy sparse recovery problem 

linear least squares problem 
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 Alternating Optimization (“Method of optimal directions (MOD)”) 

 

 

 

 

 

 

 

 

 

 

 

MOD in 2-D: The Tensor-MOD procedure 

Given A2, S 

Find A1 

Given S, A1 

Find A2 

noisy sparse recovery problem 

linear least squares problem 

1 2 

Given A1, A2 

Find S 

linear least squares problem 
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 Joint Optimization via the K-SVD 

 

 

 

 

 

 instead of iterating between A and S , iterate between atoms and update 
the m-th column of A and the m-th row of S  jointly 

 

 

 

 rank-one approximation problem: closed-form solution given by truncated 
SVD of Yn 

 

 

Dictionary Learning via the K-SVD 

= + + 
… 
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 Extending the K-SVD idea to tensors 

 

 

 

 

 we have N = N1 N2 atoms to optimize over 

 

 

 rank-one tensor approximation problem 

 Eckart-Young theorem does not generalize to tensors 

 LS-optimal: no closed-form solution, iterative scheme required [LMV00] 

 truncated Higher-Order SVD: closed-form, very close to LS-optimal 

 

K-SVD in 2-D: The K–“Higher-Order SVD” (K-HOSVD) 

1 2 

= 
+ + 

… 

[LMV00]  L. de Lathauwer, B. de Moor, and J. Vandewalle, “On the best rank-1 and rank-(r1, r2, …, rn) 

approximation of higher-order tensors,” SIAM J. Matrix Anal. Appl., vol. 21, p. 1324-1342, 

2000. 
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Random dictionary, known support 

M = 4 x 4 

N = 6 x 6 

K = 3 

T = 100 

PN = 10-4 
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Random dictionary, estimated support 

M = 4 x 4 

N = 6 x 6 

K = 3 

T = 300 

PN = 10-4 
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Random dictionary, estimated support 

M = 4 x 4 

N = 6 x 6 

K = 3 

PE = 0.1 

PN = 10-4 
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Conclusions 

 2-D sparse recovery problems on a separable manifold 

 Dictionary has a Kronecker structure 

 observation model can be expressed in tensor form  

 Tucker-2 with sparse core 

 

 dictionary learning algorithms 

 tensor structure can be efficiently exploited 

 improved estimation accuracy 

 Demonstrated using two prominent examples 

 Method of Optimal Direction (MOD)  Tensor-MOD 

 K-SVD  K-Higher Order SVD 

 improved accuracy shown numerically  

 


