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Motivation 
 Compressed Sensing 

 allows lossless acquisition of signals at a sampling rate below Nyquist 

 perfect knowledge of the dictionary is usually assumed 

 in practice, the dictionary may be unknown 

 partially (e.g., calibration, model mismatch, grid offset) 

 completely (e.g., “typical” structures in image coding) 

 State of the art 

 two of the most popular fundamental approaches: MOD [EAH00], K-SVD [AEB06] 

 many variations, e.g., SimCO, RLS-DA, discriminative K-SVD, … 

 

 

 

 Our contribution 

 tensors formulation for separable 2-D sparse recovery problems  

 extension of MOD and K-SVD, improved algorithms 

Dictionary  

learning 

[EAH00] K. Engan, S. O. Aase, and J. H. Husøy, “Multi-frame compression: Theory and design,” EURASIP Signal 

Process., vol. 80, no. 10, pp. 2121–2140, 2000. 

[AEB06] M. Aharon, M. Elad, and A. Bruckstein, “The K-SVD: An algorithm for designing of overcomplete dictionaries 

for sparse representation,” IEEE Trans. on Signal Processing, vol. 54, no. 11, pp. 4311–4322, 2006. 
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 Dictionary learning algorithms 

 MOD  T-MOD 

 K-SVD  K-HOSVD 

 Numerical Results 

 Conclusions 
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 1-D noisy sparse recovery problem 

 
 

 

 

 

 

 
 

where 

 

 

 

 2-D sparse recovery problem 

 if the manifold is separable (e.g., 2-D DOAE with a uniform rectangular array or 

joint DOA/DOD) and a separable 2-D sampling grid is chosen, then 

 

 
 

Data model: 1-D sparse recovery problem 

observations 

overcomplete dictionary 

sparse coefficient matrix 

additive measurement noise 

M < N < T 

= + 
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Multilinear structure 

 The 2-D model possesses an interesting multilinear structure  

M1 x N1 M2 x N2 

N x T 

M x T 

M1 x M2 x T 
N1 x N2 x T 

1 2 

Tucker-2 decomposition 

with a sparse core tensor 
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 Alternating Optimization (“Method of optimal directions (MOD)”) 

 

 

 

 

 

 

 

 

 

 

 

Dictionary Learning via MOD 

= + 

Given A 

Find S 

Given S 

Find A 

noisy sparse recovery problem 

linear least squares problem 
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 Alternating Optimization (“Method of optimal directions (MOD)”) 

 

 

 

 

 

 

 

 

 

 

 

MOD in 2-D: The Tensor-MOD procedure 

Given A2, S 

Find A1 

Given S, A1 

Find A2 

noisy sparse recovery problem 

linear least squares problem 

1 2 

Given A1, A2 

Find S 

linear least squares problem 
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 Joint Optimization via the K-SVD 

 

 

 

 

 

 instead of iterating between A and S , iterate between atoms and update 
the m-th column of A and the m-th row of S  jointly 

 

 

 

 rank-one approximation problem: closed-form solution given by truncated 
SVD of Yn 

 

 

Dictionary Learning via the K-SVD 

= + + 
… 
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 Extending the K-SVD idea to tensors 

 

 

 

 

 we have N = N1 N2 atoms to optimize over 

 

 

 rank-one tensor approximation problem 

 Eckart-Young theorem does not generalize to tensors 

 LS-optimal: no closed-form solution, iterative scheme required [LMV00] 

 truncated Higher-Order SVD: closed-form, very close to LS-optimal 

 

K-SVD in 2-D: The K–“Higher-Order SVD” (K-HOSVD) 

1 2 

= 
+ + 

… 

[LMV00]  L. de Lathauwer, B. de Moor, and J. Vandewalle, “On the best rank-1 and rank-(r1, r2, …, rn) 

approximation of higher-order tensors,” SIAM J. Matrix Anal. Appl., vol. 21, p. 1324-1342, 

2000. 
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Random dictionary, known support 

M = 4 x 4 

N = 6 x 6 

K = 3 

T = 100 

PN = 10-4 
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Random dictionary, estimated support 

M = 4 x 4 

N = 6 x 6 

K = 3 

T = 300 

PN = 10-4 
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Random dictionary, estimated support 

M = 4 x 4 

N = 6 x 6 

K = 3 

PE = 0.1 

PN = 10-4 
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Conclusions 

 2-D sparse recovery problems on a separable manifold 

 Dictionary has a Kronecker structure 

 observation model can be expressed in tensor form  

 Tucker-2 with sparse core 

 

 dictionary learning algorithms 

 tensor structure can be efficiently exploited 

 improved estimation accuracy 

 Demonstrated using two prominent examples 

 Method of Optimal Direction (MOD)  Tensor-MOD 

 K-SVD  K-Higher Order SVD 

 improved accuracy shown numerically  

 


