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Direction of arrival (DOA) estimation has been an active
field of research for many decades. If the field is modeled as a
superposition of a few planar wavefronts, the DOA estimation
problem can be expressed as a sparse recovery problem and the
Compressed Sensing (CS) framework can be applied. Many
powerful CS-based DOA estimation algorithms have been
proposed in recent years.

However, they all face one common problem. Although,
the model is sparse in a continuous angular domain, to apply
the CS framework we need to construct a finite dictionary
by sampling this domain with a predefined sampling grid.
Therefore, the target locations are almost surely not located
exactly on a subset of these grid points.

Early solutions to this problem include adaptively refining
the grid around the candidate targets found with an initial,
mismatched grid [1]. Recent papers try to model the mismatch
error explicitly and fit it to the observed data either statistically
[2] or by interpolating between grid points [3].

In this paper we take an analytical approach to investigate
the effect of recovering the spectrum of a source not contained
in the dictionary. Unlike earlier works on the sensitivity of
compressed sensing to basis mismatch [4] that have provided
a quantitative analysis of the approximation error, we focus
on the shape of the resulting spectrum, considering one target
source for simplicity. We show that the recovered spectrum
is not sparse but it can be well approximated by the closest
two dictionary atoms on the grid and their coefficients can be
exploited to estimate the grid offset.

Let a(µ) ∈ CM×1 denote the array manifold for an
M -element uniform linear array. We construct a dictionary
A ∈ CM×N by sampling µ with a uniform grid chosen as
µi = ∆ · i, i = 0, 1, . . . , N − 1, where ∆ = 2π

N . The true
location of the target source is given by µtrue = µL + ε,
where 0 ≤ ε < ∆ so that L and L + 1 are the closest two
grid points to µtrue. In the absence of noise, a sparse recovery
algorithm returns coefficients αi that represent a(µtrue) in the
basis a(µi). Our analysis for the distribution of αi reveals
some interesting insights. Firstly, the largest two coefficients
are located at i = L and i = L + 1, i.e., the closest two
grid points. The remaining M − 2 coefficients are found
in the vicinity of L and L + 1 for greedy-type recovery
algorithms such as Orthogonal Matching Pursuit (OMP) and
farther away for `1-type algorithms such as Basis Pursuit (BP).
Secondly, we can analytically compute the coefficients for the
best approximation of a(µtrue) using only two coefficients L

and L + 1 and provide upper bounds for the approximation
error showing that the approximation becomes very small
for N � M . Thirdly, since the coefficients αL and αL+1

depend on ε, we show that we can estimate ε via the relation
ε ≈ ε̂ = ∆ · αL+1

αL+αL+1
. The estimated ε can be used to adapt

the dictionary or to guide grid refinement algorithms more
efficiently.

To validate our observations we present an empirical result
where we applied BP to estimate the angular spectrum for a
single off-grid source (without additive noise) for M = 8,
N = 32, and ε = 0.7 · ∆ in Figure 1. The solid blue line
indicates the true position µtrue and the red crosses show
the recovered spectrum. We observe that most of the energy
concentrates on the two adjacent grid points αL and αL+1 and
the remaining M − 2 non-zero coefficients are located farther
away. Based on the relative height of the dominant peaks we
can estimate ε using the estimate ε̂ shown above. The dashed
green line shows the corresponding estimated position. The
relative estimation error is ≈ 9 · 10−6.

In the full paper we also show reconstruction results for
the OMP algorithm. The main difference is that the non-zero
coefficients concentrate in the vicinity of the actual source
location. Still, the estimation of the true location based on ε̂
works very well.

Fig. 1. Recovered spectrum using Basis Pursuit (BP)
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