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Abstract—Radio interferometers can achieve high spatial res-
olution for temporally constant sources by combining data
observed over long periods of time. Recent imaging algorithms
reconstruct smoothly varying sources by representing temporal
variation in polynomial or Fourier bases. We present a novel
image reconstruction algorithm that is able to reconstruct con-
tinuously and erratically varying sources as well as long as they
are confined to small regions of the image. This is achieved
by enforcing spatial locality and sparsity of temporally varying
sources through a group sparsity prior. Numerical experiments
show that the proposed approach recovers image series to high
accuracy where methods without temporal consistency fail and
outperforms static reconstructions of dynamic scenes even in
image regions with no temporal variation.

I. INTRODUCTION

Radio interferometers sample an image of the sky in the
Fourier domain with a changing pattern due to the rotation of
the Earth. When the sky region being imaged is constant over
the the time of observation, the different sampling patterns can
be combined to produce a single high-quality, high-resolution
image. Dynamic sources, however, cannot be imaged in this
way using traditional reconstruction methods: if every time
frame is reconstructed separately from much smaller amounts
of data, the quality of each time frame suffers. If, however,
a single image is reconstructed from all available data, the
transient sources can cause artifacts even in static parts of the
image, and all temporal resolution is lost.

We employ ideas from compressed sensing to simultane-
ously reconstruct all time slices of an observation of a dynamic
source by minimizing the numbers of nonzero and temporally
varying pixels. Static image regions benefit from the large
amount of information collected during a long observation
time, while dynamic image regions are reconstructed at high
temporal resolution. Since all pixels are coupled in the data
through the Fourier transform, a better reconstruction of the
dynamic parts can improve the reconstruction of static regions
and vice versa.

II. RADIO INTERFEROMETRY IMAGING

In radio interferometry, a region of the sky is captured
simultaneously by an array of antennae. The measurement can
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be described as a sampled Fourier transform F . We reconstruct
the sky image x from visibilities v using a non-negative
variant of the fast iterative shrinkage-thresholding algorithm
by Beck and Teboulle [1] that minimizes

argmin
x

1
2 ‖Fx− v‖22 + τf(x) s.t. x ≥ 0 . (1)

The algorithm can be summarized as follows: First, initialize
x(0) = 0, y(1) = 0, and t(1) = 1, and compute L, the largest
eigenvalue of FTF . Now perform a number of iterations,
starting at k = 1:

x(k) = p+
f (y(k) −FT (Fx− v)/L, 1/L) (2)

t(k+1) = (1 +
√
1 + 4t2(k))/2 (3)

y(k+1) = x(k) + (t(k) − 1)/t(k+1)(x(k) − x(k−1)) (4)

The algorithm is terminated when the change between two
subsequent x(k) drops below some user-defined threshold.

In Equation 2, p+
f (x̂, β) is the non-negative proximal map-

ping for f , which is defined as

p+
f (x̂, β) = argmin

x

1
2 ‖x− x̂‖22 + βf(x) s.t. x ≥ 0 . (5)

III. SPARSE TEMPORAL VARIATION

A significant part of our contribution is finding a regularizer
f that appropriately describes the expected types of transient
signals and is reasonably efficient to compute. We assume
that most pixels exhibit no temporal variation, but those who
do may change erratically. In addition, many radio images
consist of small, isolated objects on a dark background. We can
combine both assumptions into a group sparsity regularizer
[3] that minimizes the number of pixels i containing nonzero
intensities xi at any time t. This kind of group sparsity can
be achieved by minimizing the `1-norm of the `∞-norms of
all groups, the so-called `1,∞-norm

‖x(t)‖1,∞ =
∑
i

max
t
|xi(t)| . (6)

When only a single time slice is present, the `1,∞-norm
obviously degrades to an `1-norm of x, and the proposed
approach becomes equivalent to previous approaches based
on `1-norm minimization. For time-resolved data, however, we
observe a number of interesting effects. First of all, minimizing
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Fig. 1: Sampling pattern and test scenes.

the number of nonzero groups promotes pixel sparsity of each
time slice. In addition, since only the maximum intensity
over time is taken into account, erratic temporal behavior of
intensity amplitudes can be reconstructed. At the same time,
temporal consistency of intensity locations is achieved: if a
pixel is bright in one time frame, the optimal choice for placing
ambiguous intensity in another frame is the same pixel, and
vice versa. In this way, information from multiple observations
with different baseline patterns is effectively combined to
resolve ambiguities and reduce sidelobes in all time frames.
Similarly, a short flare of an otherwise faint but temporally
varying source helps localize the faint source over the total
duration of the observation, at the same time preventing the
faint source from erroneously showing up as a side lobe in
other frames. Finally, when `1,∞ minimization is applied to
a time-resolved observation of a scene without any temporal
variation, one can expect results very similar to those of a
direct `1 reconstruction of a single image from all available
data.

IV. IMPLEMENTATION

Our implementation follows the algorithm outlined in Equa-
tions 2–4, with the vectors x, y and v redefined as their
concatenated values from each time frame. Likewise, the
measurement operator F becomes a block-diagonal matrix
consisting of the respective Fourier transforms in each time
frame. The regularizer f(x) = τ ‖x‖1,∞ contains implicit
information about which components of x and y belong to
which time frame.

We observe that the proximal mapping p+
τ‖·‖1,∞

(x̂, β) can
be computed indepentently for each group, that is, the `1,∞-
norm is group separable [5]. This is because the groups, each
consisting of all time frames for a single pixel, are disjoint,
and the proximal mapping for the outer `1-norm is separable
in its components as discussed above.

The (unconstrained) proximal mapping for the inner `∞-
norm,

pτ‖·‖1,∞(x̂, β) = argmin
x

1
2 ‖x− x̂‖22 + βτ max

i
xi , (7)

can be computed by projecting x̂ orthogonally onto the set of
all vectors with `1-norm less or equal to βτ and subtracting

the result from x̂ [5]. Several algorithms exist for computing
the orthogonal projection, including an O(n log n) algorithm
by Daubechies et al. [2] that our implementation uses. In order
to ensure nonnegativity of the result, x̂ is thresholded against
zero before applying the proximal mapping to remove any
negative values.

For comparison, we implement several variants of a com-
pressed sensing imaging algorithm [4]. The static method
produces a single time frame from all available data under
the assumption that the source is temporally constant. The
`1 method reconstructs subsequent time frames individually
from the data taken during the respective time frame. Finally,
we implement a novel variant, the `2 method, that promotes
smooth temporal variation in addition to `1-sparsity of each
time frame. It enforces smoothness by extending the `1 method
with a penalty term that is quadratic in the temporal derivative
∂tx, yielding the problem

argmin
x

1
2 ‖Fx− v‖22 + µ ‖∂tx‖22 + τ ‖x‖1 (8)

subject to xi ≥ 0 for all i. The above statements on transi-
tioning from the static to the time-dependent case apply. The
temporal derivative is approximated by (∂tx)i (t) = xi(t) −
xi(t − 1), where t > 0 is an integer index. By substituting
(F , µ∂t)T for F and (v, 0)

T for v, we can reformulate the
problem as

argmin
x

1
2

∥∥∥( Fµ∂t)x− (v0)∥∥∥22 + τ ‖x‖1 , (9)

which can be solved without major modifications to the
original algorithm.

V. RESULTS AND DISCUSSION

We evaluate the reconstruction accuracy of our method on
a number of simulated measurements, so that comparison to
ground truth data as well as to other reconstruction methods
is possible. In addition, we use a numerical experiment to in-
vestigate the circumstances under which the proposed method
yields significant advantages over existing approaches.

16 subsequent 30-minute observations of different synthetic
32×32 pixel images on a hypothetical 12-antenna array were
simulated, yielding 66 visibilities per time frame, Figure 1a.
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Fig. 2: Relative reconstruction errors for different test scenes.

Images were reconstructed from these data using four different
approaches. The static reconstruction is similar to a CLEAN
reconstruction of a single image from all time frames, while
the `1 reconstruction corresponds to the same method applied
to each individual time frame. The `2 method recreates the
effect of an algorithm that assumes smooth temporal variation.
Finally, the proposed `1,∞ approach promotes sparsity of both
the spatial intensity distribution and the set of transient pixels.
All algorithms were run for 10000 iterations with τ = 0.1
and (for `2) µ = 1. In our experiments, results did not change
significantly for different values of τ and µ within a few orders
of magnitude.

For the first experiment, we simulate a small moving object
on an extended background, Figure 1b. The background is
modeled by a cosine-shaped blob, overlaid by a single bright
pixel moving diagonally into the center. The static reconstruc-
tion recovers the main features of the source, but is unable
to temporally resolve the movement. The `1 reconstruction,
on the other hand, suffers from severe artifacts because each
individual time frame does not contain enough information to
reconstruct the whole image. The `2 method is well adapted
to the continuous type of temporal variation and therefore
reconstructs the scene well. However, it does not strongly
penalize smooth temporal variation even in static parts of the
image, leading to faint sidelobes in the background. Finally,
the `1,∞ reconstruction is visually almost indistinguishable
from ground truth.

Relative reconstruction errors for the different approaches
are shown in Figure 2a. Because the static method only
reconstructs a single time slice, it converges quickly. However,
a significant error remains due to the temporally varying
parts of the image. The independent reconstructions of the
`1 method converge at similar speed, but leave an even higher
error due to the data-starved setting. For the `2 approach, the
sidelobes in the background and slight temporal fluctuations
in static regions, even when not visually conspicuous, lead to
noticeable residual error. Finally, the `1,∞ method converges
more slowly at first, but finally reaches a relative error of the

order of 10−4.
In a second experiment, we investigate how the different

approaches perform in the presence of static, smoothly varying
and erratically varying sources. The synthetic source consists
of a dark background with randomly placed point sources,
30 of which are static, 15 change linearly over time and 15
vary erratically, Figure 1c. While the static method recovers
the locations and average intensities of both static and varying
sources reasonably well in most cases, visibility data that is not
explained by the static model leads to faint bogus sources in
background regions. The `1 method correctly localizes many
of the sources, but without exploiting temporal coherence,
each individual frame does not contain enough information
to be completely reconstructed. The `2 method reconstructs
many static or smoothly varying sources rather well, but
attenuates the temporal variation of erratically varying sources.
Similar to the static method, this leads to bogus sources in the
background. In addition, even many static sources fluctuate
slightly over time because no penalty is used to enforce their
being completely static. Finally, the `1,∞ method correctly
recovers the location and behavior of static, smoothly varying
and erratic sources with only minor errors in the absolute
intensities.

Relative reconstruction errors for the different approaches
are shown in Figure 2b. The static and `1 performance
resembles the previous experiment, albeit the residual error
for the static method is higher due to a larger amount of
temporally varying sources. Like the static method, the `2
approach suffers from artifacts due to visibility data from
erratic sources that cannot be explained by the model. It
reaches a slightly lower reconstruction error, presumably be-
cause the smoothly varying sources are better reproduced.
Finally, the `1,∞ method correctly localizes all sources, but
the bias introduced by the regularization term leads to in-
accuracies in absolute intensity of about one percent. This
over-regularization can be counterbalanced with a subsequent
debiasing step that keeps all zero pixels fixed and solves for
the remaining intensities in a least-squares sense.
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Fig. 3: Median relative reconstruction errors for different scene types.

The performance of different reconstruction approaches
can vary widely for different observation situations. While a
comprehensive quantitative study of the influence of image
content on reconstruction quality is out of the scope of this
paper, we investigate how quality varies with the amount of
available information per time frame. To do so, we use the
same setup as before, but select only a random subset of all
available visibilities in each frame. We then reconstruct several
different, randomly generated source images from these short-
ened data using the four abovementioned methods. By varying
the number of visibilities retained in the data, we can graph
the relationship between the amount of available information
and the reconstruction quality of different algorithms.

Figure 3a shows the median relative error computed from
reconstructions of 20 source images, each containing 10 ran-
domly placed, erratically varying point sources on a dark back-
ground. The `1 method is able to reconstruct each frame indi-
vidually (without exploiting temporal coherence) from about
35 visibilities per frame, while the proposed `1,∞ approach
achieves the same accuracy with as little as 20 visibilities. The
`2 method fails to reach high accuracy because it inevitably
smoothes out the erratic variation. Reconstructing a single
image using the static method fails completely since the scene
is dynamic and cannot be represented by a single image. In
conclusion, the `1,∞ method always performed to the best
competitor, independent of the number of visibilities used.
However, since it involves a comparatively high computational
load, the static or `1 approaches may be more convenient to use
for very low and very high numbers of visibilities, respectively.

After demonstrating that the proposed `1,∞ approach is at
least on par with the reference methods for erratic sources,
we investigate how it performs when no temporal variation
is present in the data. The results are shown in Figure 3b,
where 20 randomly generated images were reconstructed, each
containing 10 randomly placed static point sources. First,
we observe that the `1 performance on a static scene is
indistinguishable from that on a dynamic scene because the
temporal coherence between frames is not exploited. The `1,∞
approach, on the other hand, benefits from the additional
coherence; satisfactory reconstruction quality is reached with

as little as 10 visibilities. The `2 method requires about 20
visibilities to achieve similar accuracy. This might be caused
by the fact that pixel intensities are allowed to fluctuate over
time because neither sparsity of the set of transient pixels nor
of the temporal variation itself are enforced. Unsurprisingly,
the static method excels at reconstructing a static scene.
Unless the number of visibilities is very low, however, the
performance of the proposed approach seems comparable to
the static reconstruction method even on completely static
images.

VI. CONCLUSION

We have presented a novel image reconstruction algorithm
for transient radio sources based on group sparsity. Numerical
experiments show that the proposed approach outperforms
existing methods on data-starved observations of sources with
a sparse pattern of smooth or erratic temporal variation.
Outside this realm, it degrades gracefully: for data-starved
observations of static scenes, its performance is comparable to
sparse reconstruction of a single static image, while for data-
rich observations of dynamic scenes, it performs comparably
to sparse reconstruction of individual frames.
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