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ABSTRACT

Compressive sensing (CS) provides a new paradigm in data
acquisition and signal processing for radar. In this work, we
investigate the performance of several deterministic wave-
forms for the basic problem of range-only estimation in
CS-radar system. We investigate the effects of a digital RF
system - from signal generation at the transmitter, to sparse
signal recovery at the receiver, on the incoherence of the re-
ceived signal. We demonstrate the capabilities of CS-radar
versus the conventional pulse compression radar.

Index Terms— radar, compressive sensing, waveforms,
optimization

1. INTRODUCTION

Compressive sensing (CS) offers a new perspective for sig-
nal acquisition and recovery, based on the sparsity and inco-
herence of the unknown signal. Under those conditions, the
unknown signal can be recovered even from a possibly under-
determined linear system. In radar, the incoherence is tightly
related to the well known autocorrelation function (ACF) of
the transmitted pulse. Most works on optimal waveforms in
CS-radar do not consider the effects of the radio frequency
(RF) system on the received signal [1, 2], or assume random
signal acquisition [3]. Due to the specific considerations that
are made for a radar transceiver, e.g., operation of the power
amplifier in saturation, cost and complexity, the intention is
to utilize constant amplitude deterministic waveforms.

In this work, we investigate several candidate determinis-
tic waveforms for implementation in a CS-radar system. The
optimality of those waveforms is defined based on the width
of the main lobe and the level of the off-peak correlations in
the ACF, and concerning the RF System - the required double-
sided transmission bandwidth, as well as the ease of genera-
tion, transmission and reception.

In Section 2, we introduce the data model for a CS-based
radar for range-only estimation, and establish the notation.
Then, in Section 3 we present the model of the digital RF
system, while Section 4 and Section 5, respectively, show our
results on the optimization of the waveforms and the recovery
results. Finally, we draw some conclusions in Section 6.

2. CS RADAR DATA MODEL

We are interested in the detection of stationary targets in the
unambiguous range interval [ρ1, ρ2]. Discretization of [ρ1, ρ2]
into QN bins (range gates), each with size ∆τ = 1/(Qfs),
defines the estimation grid [τ1, . . . , τQN ], where each cell τk,
is related to a target with magnitude xk, k = 1, 2, . . . , NQ.
The sampling frequency fs = 1 is the reference sampling
frequency, normalized to the double-sided bandwidth Bs = 1
of a linear frequency modulated (LFM) pulse, and we refer
to the grid, with cells of size ∆τ = 1/fs, as the reference
estimation grid.

If the transmitted analog pulse sa(t) has lengthL/fs, then
the received signal r(t) has length P/fs, where P = N +
L−1. Sampling r(t) at the reference frequency fs, we obtain
the vector r ∈ CP×1, which contains the radar echoes y
corrupted by Gaussian noise e ∼ CN (0, σ2I), with I an
identity matrix of size P × P . Then the radar echo can be
written as

y = Sx, (1)

where S is the model matrix and x ∈ CNQ×1 contains the
unknown target magnitudes xk . The (n, k)-th entry of S is
related to the transmitted analog pulse sa(t) as:

Sn,k = sa(n/fs − k/(Qfs)). (2)

In case Q > 1, we obtain a finer resolution ∆τ =
1/(Qfs), while sampling at the reference rate fs at the re-
ceiver , which leads to an underdetermined system in (1).

Furthermore, CS offers a way to reduce the number of
measurements P , with a factor C, while keeping the refer-
ence resolution ∆τ = 1/fs, by application of a compression
matrix Φ ∈ CbP/Cc×P , where b·c denotes the floor func-
tion. Also in this case, we get an underdetermined system
r = ΦSx + Φe. The condition on Φ is to be incoherent with
S, while the specific choice of Φ is to the user [4].

In the above mentioned underdetermined problems, x can
be recovered if S or accordingly ΦS satisfy the restricted
isometry property (RIP) [5], which guaranties the incoher-
ence. A simpler measure of the incoherence of a matrix is
the mutual coherence µ(S), given by the largest inner product
µ(S) = maxi 6=k |〈si, sk〉| between the normalized columns
si of S, e.g., ||sk||2 = 1, k = 1, 2, . . . , NQ, where || · ||2



marks the `2 norm of a vector, which we will use in Section 4
to judge the quality of the investigated waveforms.

3. RF SYSTEM

We model the radar system as a general digital RF system
as shown in Fig. 1. A typical realization of such a system
will require a fast DAC, ADC and DDC (digital down con-
verter). We concentrate on the digital band-pass filters (BPFs)
and Hilbert transform. The power amplifiers and the analog
filters are not included at this point. The investigated wave-
forms are the LFM, Alltop and Björck waveforms [6].

Fig. 1. Simplified block scheme of a generalized RF trans-
mitter and receiver

After the initial sequences are generated at rate fs =
1 they are interpolated to a new sequence ŝ[m], at rate
fs,IF = M , in order to allow for digital up-conversion to
intermediate frequency (IF). The initial LFM and Alltop se-
quence are linearly interpolated ŝ[m] = (s[bm/Mc + 1] −
s[bm/Mc])(m modM)/M + s[bm/Mc], whereas the binary
Björck is put on a rectangular pulse shape ŝ[m] = s[bm/Mc]
in order to keep it binary , where m = 0, 1, . . . ,ML − 1,
n = 0, 1, . . . , L− 1 and b·c denotes the floor function. After
the up-conversion the resultant signal is filtered to constrain
its bandwidth and to filter any harmonics from the mixing.

The receiver basically does the inverse of the transmitter,
starting with the ADC which samples r(t) at rate fs,IF = M .
We use the Hilbert transform to recover the complex signal
and another low-pass filter (LPF) which precedes the final
down-sampling to the initial rate fs = 1.

The double sided bandwidth Bf of all the filters is tunable
and is relative to the reference sampling frequency fs = 1.

3.1. Sparse signal recovery (SSR)

Several SSR methods [7] are available for implementation in
CS radar. We prefer a Bayesian approach, implemented using
the complex fast Laplace (CFL) algorithm because it is robust
to noise and is executed in nearly real time (note that the FL
from [8] is adapted to complex signals in [9]).

In traditional radar processing, the matched filter (MF):

xMF = SHy (3)

is the test statistics for a likelihood based detection and esti-
mation. The Bayesian approach delivers an SSR estimator:

xSSR = arg min
x
{|y − Sx|2 + λ||x||1}, (4)

where the parameter λ balances between the noise energy and
the sparsity.

4. COHERENCE AND OPTIMIZATION

4.1. Optimization of the ACF

The coherence of the model matrix S in (2) depends on the
shape and bandwidth of the transmitted pulse. Minimiza-
tion of the coherence is equivalent to minimizing the power
in the off-peak correlations of the ACF of the transmitted
waveform [6], corresponding to the optimization problem
min||SHS − I||2F . Because of the difficulty of solving this
quadratic optimization problem, we minimize the average co-
herence of the waveforms [6]. We adopt the algorithm of [10]
to solve the optimization problem and present the results in
Fig. 2(note that for this optimization, we assume Q = 1 and
C = 1).

Fig. 2. Optimized waveforms



Optimization of the LFM decreases the width of the main
lobe and removes the sinc structure of the ACF. For the op-
timized Alltop and Björck, the sharp response at zero delay
remains and the off-peak correlations are reduced.

4.2. Coherence of an underdetermined system

Up-sampling of the estimation grid to a cell size of ∆τ =
1/(Qfs), with Q > 1 equates to finer sampling of the trans-
mitted waveform in (2), which increases the correlation be-
tween the columns of S, as shown in Table 1. Increasing Q,
quite drastically reaches the maximum coherence µ(S) ≈ 1.

On the other hand, compression by a partial Fourier ma-
trix Φ yields better coherence, even for C = 4, as shown in
Table 2.

Table 1. Coherence of S with up-sampled estimation grid
Waveform Q = 1 Q = 2 Q = 4 Q = 8

LFM -3.9dB
(0.64)

-0.91dB
(0.9)

-0.22dB
(0.97)

-0.05dB
(0.99)

Alltop -16.6dB
(0.15)

-3.18dB
(0.7)

-0.55dB
(0.94)

-0.13dB
(0.98)

Björck -18dB
(0.13)

-3.25dB
(0.68)

-0.6dB
(0.93)

-0.14dB
(0.98)

Table 2. Mutual coherence µ(ΦS), where Φ is a partial
Fourier matrix.

Waveform C = 1 C = 2 C = 4 C = 8
LFM -3.9dB

(0.64)
-3.82dB
(0.64)

-3.82dB
(0.64)

-4.06dB
(0.67)

Alltop -16.6dB
(0.15)

-12.53dB
(0.23)

-9.61dB
(0.33)

-6.83dB
(0.45)

Björck -18dB
(0.13)

-14.3dB
(0.19)

-12.17dB
(0.25)

-8.25dB
(0.38)

5. RESULTS

This section contains our results from SSR (4), as well as the
MF-type of detection, where we assume an LFM sequence of
length L = 100, and an Alltop and Björck sequence of length
L = 101. The reconstruction results are averaged over 100
independent noise realizations, where we assume that SNR =
10 dB, which is defined as

SNR =
E{|s[n]|2}
E{|e[n]|2}

=
1/L

σ2
, (5)

where σ2 = BfN0 is the bandwidth dependent noise vari-
ance. In our simulations, we fix the noise power spectral den-
sity N0 and set σ2 = BfN0, according to the Bf . In this
way, we incorporate the effect of capturing more noise power
by increasing Bf .

To evaluate the resolution capabilities of the waveforms,
we take as spacing between two targets one reference reso-
lution cell 1/fs for Q = 2, half a reference cell 1/2fs for
Q = 4. In such a way, we can always see a possible false
positive on a grid point between the two true targets.

The compression matrix Φ contains P/C randomly se-
lected rows from a P × P DFT matrix. In Fig. 7 and Fig. 8
we show the SSR and MF results, for Bf = 1 and Bf = 2.

Fig. 3. MF and SSR with 2 targets SNR = 10 dB per target,
Q = 2, Bf = 1.

Fig. 4. MF and SSR with 2 targets SNR = 10 dB per target,
Q = 2, Bf = 2.

Fig. 5. MF and SSR with 2 targets SNR = 10 dB per target,
Q = 4, Bf = 1.

Because of the good incoherence µ(S) in case C = 4, all
three waveforms provide good reconstruction, if a wider filter



Bf = 2 is chosen. However, Bf = 1 results in false positives
for Alltop and Björck.

Fig. 6. MF and SSR with 2 targets SNR = 10 dB per target,
Q = 4, Bf = 2.

Fig. 7. MF and SSR with 2 targets SNR = 10 dB per target,
C = 4, Bf = 1.

Fig. 8. MF and SSR with 2 targets SNR = 10 dB per target,
C = 4, Bf = 2.

6. CONCLUSIONS

In this paper, we showed that in a digital CS-radar system,
with a properly chosen Bf regarding the transmitted wave-
form, a higher range resolution than the conventional MF is
achieved. Furthermore, a wider filter, capturing more noise,
does not have a significant effect on the recovery process.
However, increasing the resolution beyond Q = 4 yields a
very coherent sensing matrix S, resulting in false positives.

It was shown in [6] that Bf influences the sidelobes and
the width of the main lobe in the ACF of the Alltop and
Björck. Furthermore, by graphical comparison, the required
Bf for Alltop is Bf = 2 and Bf = 1 for Björck sequences.
However, here we showed that we actually need Bf = 2 for
both sequences to perform optimally.

On the other hand, compressing the signal at the receiver,
by applying a compression matrix Φ, keeps the uniqueness of
the columns of S. In that case µ(S) is not severely decreased,
allowing good sparse reconstruction with all the investigated
waveforms, for SNR = 10 dB. Also, the coherence of the ini-
tial waveforms can be reduced, while the behavior of those
optimized waveforms in an actual system will be addressed
in a following article.
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