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Abstract— The Compressive Sensing was originally developed in 

order to directly acquire a compressed description of a sparse 

scene. This can be possible, without error, provided that two 

conditions are met: -The scene in question must be sparse and -

The sparse sampling scheme must meet certain criteria, 

especially the RIP criteria and a certain incoherence criteria. In 

Radar domain, the main advantage highlighted in the literature 

is the reduction of the data-flow between the R.F. front-end and 

processing that would otherwise intractable or uselessly costly in 

number of cases. But so far, most of the work in the literature has 

focused on the mathematical aspect of the underlying L1 inverse 

problem. By relying on the state of the art of Radar technology, 

this paper shows some examples where the use of sparse sampling 

is really justified. We also show that the inverse problem 

resolution based on the minimization of the L1 norm, even if it is 

elegant way to solve the problem, is not the only means to address 

the problem. 

Keywords-component : Compressive Sensing; Sparse scene; 

Inverse Problem; Radio-Regulation; Step-frequency; MPRF; 

Antenna Array; Analog To Information Converter. 

I. INTRODUCTION 

The Compressive Sensing or also Compressive Sampling 
(CS) is the subject of numerous studies in recent years. The 
basic idea of CS is to take advantage that many scenes 
observed by sensors, in particular by Radar, are often sparse. 

The aim of CS is the direct acquisition of a compressed 
representation of a sparse scene, in contrast to traditional 
compression methods which are carried out after “normal” 
sampling at constant rate according to the Nyquist’s criterion. 
When applicable, CS consists in acquiring only a small number 
of samples: if there is no noise, and if the sampling meets 
certain criteria, the reconstruction is exact. The reconstruction 
process involves solving an ill-posed inverse problem by 
adding a sparsity constraint. This is typically carried out by a 
constrained L1-norm minimization. 

So far, many studies have been devoted to the mathematical 
aspect of the inverse problem solution using this L1-norm 
minimization. Besides its theoretical interest, we can 
legitimately ask the following question, namely “In what 
manner CS is really useful to the art of Radar?” 

In this paper, some examples where sparse sampling may 
solve some issues inherent to Radar are given. It will be noted 

we have intentionally written “sparse sampling” but neither 
“compressive sampling” nor “compressive sensing”.  

Indeed, in most of case, the front-end of the radar system 
(RF, ADC) and its back-end (Digital Processing) are co-located 
and the main issue to be solved is not really to manage the data 
flow volume between both ends, which is no longer a serious 
problem with current digital processing systems. The main 
problem we are facing is that the sampling is not always ideal 
for a variety of reasons. As a result, some data will be 
unavailable but we need to ensure a correct processing. 

However, in special cases (for instance, onboard very small 
Unmanned Air Systems, Spacecraft or in case of sensors in a 
tight network), the front-end and the back-end cannot be co-
located. It is then necessary to have a data-link between the 
ends which may be a bottleneck in some applications. In these 
cases, the CS may be useful as data compression means. 

Some “Radar” cases where we have to cope with missing 
data or sparse sampling are discussed in this paper: 

 Sparse sampling in Frequency Radio-regulation 
issues in broadband applications that may prevent to 
have a sufficient wide and continuous bandwidth.  

 Sparse sampling in Time Range ambiguities 
removal: Another interesting illustration is the CS 
approach for the resolution of range ambiguities in the 
case of Medium PRF (MPRF) Radar. 

 Sparse sampling in Space Antenna issues. For 
many reasons, it is not always feasible having large 
antenna arrays which are perfectly sampled (i.e. 

elements spacing is about /2) because of: 

o The cost of large number of RF channels in Digital 
Beam Forming (DBF) system; 

o The space availability. 

The paper is organized as follows: 

 CS principles are resumed in section II; 

 Then three typical cases involving sparse sampling in 
Radar field are discussed in section III; 

 The section IV concludes this paper. 



II. COMPRESSIVE SENSING 

A. General Considerations on CS 

As stated in introduction, CS takes advantage that many 
scenes are often sparse when viewed in a suitable observation 
basis: for instance, the Fourier basis where sinusoidal signals 
are represented by a set of discrete lines.  

A scene containing a small number k of “targets” is said “k-
sparse” if there is a representation basis in which the scene can 
be described as a linear combination of k signals or atoms. 
Such a scene is called “compressible” because it can be 
described using only a few multiplicative coefficients.  

The original goal of CS is to perform directly a compressed 
acquisition (so with little redundancy) of a sparse scene. In 
contrast, the traditional acquisition methods start by sampling 
the scene at a constant rate (according to the Nyquist’s 
criterion) regardless of any assumption about its contents. 
Then, a specific compression algorithm precisely takes benefit 
of redundancy in the data set to reduce the data volume. 

Another underlying idea of CS is allowing the direct 
extraction of useful information contained in the scene from a 
few number of well-chosen samples. CS can be seen as direct 
“Analog to Information Conversion” (AIC) [4]. 

CS consists in gathering only a small number M > k of 
well-chosen (but non-adaptively) samples or a small number of 
well-chosen projections of the scene onto a suitable basis. If the 
scene is perfectly k-sparse, and if the sampling scheme meets 
certain “incoherence” criteria (cf. section B), the reconstruction 
of the scene is exact [1] [2]. 

B. Signal Recovery 

A scene of dimension N is k-sparse with respect to the 

representation basis  N ,..,1Ψ if its representation in a 

measurement basis x  can be written as: 

(1) sΨx   

Where s is the k-sparse representation of the scene to be 

retrieved (i.e. s has up to k non-zero entries). In the 

measurement basis, the scene is expressed as a linear 
combination of up to k columns  of Ψ (each column  is an 

“atom” of dimension N). Each atom must be properly sampled 
so that any k-sparse scene is represented with sufficient 
accuracy. This notion corresponds to the accuracy of the 
reconstruction grid. A thin grid will provide a kind of high 
resolution. However, if it is too thin, the scene loses its sparse 
nature. This tradeoff is an important point and is currently the 
object of studies. 

As said in introduction, CS consists in acquiring only M < 
N compressed measurements from x . Algebraically, this 
operation is expressed as: 

(2) ssΨxy   

Where Φ is the sampling matrix whose size is (M x N). It 
describes how getting the compressed sensing vector 

y (dimension M) from the uncompressed representation of the 

scene x  (dimension N). In practical cases, the separation 
between Φ and Ψ is quite arbitrary. Globally, we can tell 
thatΘ is the sensing matrix, which is a (M x N) matrix, and 

M/N is the compression factor. 

The recovery of x or s from y according to (2) is an ill-

posed problem. The pseudo-inverse solution, that is to say the 
solution which minimizes the L2-norm (the energy) within the 
subspace defined by (2), is not correct in the case of a k-sparse 
scene. However, solving the following problem constrained by 
the minimization of the L0-norm (3) provides an exact 
solution. (By definition, the L0-norm of a vector counts the 
number of its non-zero entries.)  

(3) Θsyss  ..minargˆ
0

ts  

Such a problem involving a minimization of L0-norm is 
NP-hard, thus the equivalent inverse problem, which is solved, 
minimizes the L1-norm: 

(4) 
 
 noisewith ..minargˆ

noise no..minargˆ

21

1


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Θsyss

Θsyss

ts

ts
 

The matrix Θ  has to fulfill the Restricted Isometry 

Property (RIP) [1] [2]. A more physical explanation of this 
condition requires that the columns  of Θ be incoherent 

between them, that is to say the normalized inner product
1
 

between two distinct columns must be as small as possible with 
respect to 1 [3]: 

(5)  
 Nj

jjkj
kj

,ts,

,1

1..1max




  Θ  

For example, a regular sub-sampling on a Fourier basis 

brings up 1kj ,  for some distinct columns i and j: this is 

the well-known frequency folding effect. The incoherence is 
essential for the reconstruction. Furthermore, its value provides 
a lower bound on the number of measurements that need to be 
taken. 

This incoherence property is well represented by drawing 
the “coherence” matrix: 

(6)   ΘΘΘ
H  

Ideally, the coherence matrix is almost equal to the identity 

matrix )(NI . 

C.  Noise effect considerations 

The presence of additive noise reduces the “sparse” nature 
of the observed scene. In addition, in the presence of noise, the 
algorithms for solving the inverse problem are more or less 

                                                           
1In case of Radar signals, the inner product is taken in the Hermitian 

sense (correlation between vectors). 



performing. This topic is currently the subject of numerous 
publications within the framework of CS. 

However, if the final goal of the sensing process is to 
decide the presence or absence of a target in the presence of 
noise (which is typically a “Radar” case), an issue directly 
related to the number of measurement arises. Furthermore, this 
issue appears regardless and irrespective of the method of 
reconstruction which is used. 

Let us consider the case where we want to detect a target 

with a probability of detection DP given a probability of false 

alarm FAP . In the case of a single measurement, the required 

Signal to Noise ratio (SNR) is given by:  

(7) 1
log

log


D

FA

P

P
SNR  

Now suppose we perform N measurements. By taking 
advantage of the fact that the N measurements on the “useful” 
signal are redundant while the N noise measurements have no 
coherence, the lower bound of the required SNR is 

now NSNRSNR N /)(  . If we use a compressed acquisition 

method using only M < N samples, the lower bound of the SNR 

will be only MSNRSNR M /)(  . Whatever the reconstruction 

algorithm, the loss of SNR cannot be less than N/M > 1 (i.e. the 
compression factor). A compressed acquisition is inherently 
less sensitive than a fully redundant acquisition according to 
the Nyquist’s criterion.  

This intrinsic loss of sensitivity on receive (due to the 
compressed acquisition) must be compensated as much as 
possible on transmit. All things being equal, the Radar 

detection theory [5] states that the best detection range MAXR  

obeys to the following proportionality relationship: 

(8) RTRTMAX AEATPR 4  

Where TP is the transmitted power, T is the total illumination 

time (taking in account the duty cycle, i.e. the sum of the 

transmitted pulses durations during the observation), TE is the 

“utilized” radiated energy toward the target and RA is the 

“electrical” surface of the antenna array system on receive 
(taking in account the possible sparcity of the array). 
According to the dimension where applies incomplete 
sampling (space, time, frequency, etc.), it will be possible or 
impossible to compensate for the loss of receiver sensitivity 
(due to under-sampling) by using an “ad-hoc” transmission 
scheme. This is an extremely important point in Radar art, 
because the transmitted power is generally an expensive 
resource. 

III. EXAMPLES OF SPARSE SAMPLING USES IN RADAR 

A. High Resolution SAR with incomplete Band 

There exist mainly two reasons for using such a scheme: 

 Radio Regulations and saving of spectrum resources: 
In some Radar bands, it is not possible to find enough 
continuous bandwidth. For instance a SAR image with 
30 cm resolution requires at least 500 MHz of 
bandwidth.  

 Waveform issues related to Range-Doppler 
ambiguities in particular when using a step-frequency 
waveform [6]. An illustration of such an issue is given 
Figure 1. Indeed, these waveforms are an elegant and 
versatile means for generating broadband signals with 
low instantaneous bandwidth hardware. Reducing the 
number of steps while preserving the total bandwidth 
(resolution) leads to deal with an incomplete 
bandwidth. 
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Figure 1.  Range-Doppler issue with step-frequency waveform 

1) SAR mage properties 
A useful SAR image is not generally a sparse scene. 

Indeed, such an image consists of two parts: - the background 
and, - strong but localized echoes such as point-like targets or 
ridge targets.     

The background spreads on very large parts of the scene.  
The background has absolutely no “sparse” features but its 
good reproduction is essential to the operational use of images 
(roads, runways, water areas, shadows produced by elevated 
targets, etc.). In contrast, the second category of echoes (strong 
point-like echoes) has the characteristics of “sparse” targets 
and these strong echoes are also essential to the operational use 
of images.  

While the background (not sparse) has a moderate 
dynamics, the dynamics of point-like echoes (sparse) may be 
very high (over 40 dB above the background and even much 
more in the case of high-resolution images). The standard 
matched filter processing is no longer sufficient: we must 
correct the effect of the missing band so that the background is 
not corrupted by the side-lobes responses such as in Figure 2.  

   
Data Space Az. Compression Point Response

Ky

Kx

Kr



X

Y

Hole in BW Hole in BW

Range 

side-lobes

 
Figure 2.  Range sidelobes induced by incomplete band. 

Thus, the practical need is absolutely not to reduce the flow 
of data using a compressed acquisition, but it is to interpolate 
the missing data between sub-bands that induce side lobes with 
an incomplete bandwidth. Note that each sub-band is properly 
sampled (at Nyquist’s rate). 



Among all applicable methods, we can mention two 
specific ones: 

 Auto Regressive (AR) interpolation; 

 L1-modified regularization [7] [8]. 

Whatever the interpolation method that is used, it is always 
implemented after the azimuth compression so that the number 
of strong echoes per azimuth bin is as small as possible (the 
scene corresponding to the strong echoes must be the as 
“sparsest” as possible). 

2) AR interpolation 
In frequency domain, the point-like echoes appear as 

complex sine signals while the background appears more or 
less as a Gaussian white noise. Such a scene is convenient for 
being represented by AR model of low order. The AR 
modeling allows extrapolating the missing signals around each 
sub-band (Figure 3. ). 
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Figure 3.  Principle of A.R. Extrapolation 

Each missing part is retrieved by a weighted average of: 

 The extrapolation toward high frequencies from the 
lower sub-band; 

 The extrapolation toward low frequencies from the 
upper sub-band. 

Such a reconstruction on real data is presented in Figure 4.   

Full bandwidth 30% bandwidth missing After AR interpolation 

Range Range Range

 
Figure 4.  AR reconstruction 

As the number of “hole” is usually small, this interpolation 
is easy to mechanize. The advantage of the AR interpolation 
method is its low computational need. On the other hand, the 
main issue is to automatically find out the required order of the 
model. 

3) Regularization method 
Regularization allows solving an ill-posed problem by 

adding a priori information on the “right” solution to be found 
[8]. 

Let S be the reconstructed range profile (N-vector), Y be 

the input signal (M-vector), that is to say the received spectrum 

vector from the usable sub-bands only. S must fit with the 

input data, that is to say must fulfill the following condition: 

(9) 22

2
)(FFT n SΦY  

where 2
n denote the measurement noise and Φ is the 

concatenation (M, N) matrix. Φ is constructed from the 
identity matrix where the lines corresponding to missing data 
have been removed. 

The added a priori knowledge states both the background is 
not sparse but the strongest echoes are sparse (cf. section 1)). 
This assumption is expressed by the fact that the right solution 
should minimize the L2-norm on small signals (not sparse) and 
should minimize the L1-norm on strong echoes (sparse) [9]. A 
convenient way to express this condition consists in 
minimizing the following “L1-modified norm”: 

(10)   22

#1
isS  

A representation of this norm in a 2D space for  = 1 is 
given in Figure 5. The transition from spherical constant norm 
surfaces to polyhedral constant norms surfaces with their 
spikes along basis axes is clearly shown.  

 
Figure 5.  L1-modified norm in 2D 

The constant  determines the transition between an L2 
behavior and an L1 behavior of the norm. Its suitable value 
depends on the background level. 

The regularization allows retrieving the right solution 
which satisfies (9) subject to minimize (10). The problem is 
usually solved using a convex relaxation: 

(11) 
#1

2

2
)(FFTminargˆ SSΦYS   

By noticing that )(FFT SX  may be written algebraically 

SΨX  (where Ψ is the Fourier basis), equation (11) 

becomes:  

(12) 

#1

2

2

#1

2

2

minargˆ

minargˆ

SSΘYS

SSΨΦYS








 

This writing is mathematically one possible formulation for 
CS reconstruction (LASSO). 



Some results obtained on real data are presented below. The 
comparison between the matched filter solution (missing data 
are assumed null in matched filter solution) and the regularized 
reconstruction by solving (11) is presented in Figure 7.  

Transmitted Frequencies

Doppler

Transmitted Frequencies

Doppler
 

Figure 6.  Interpolation of missing data 

Furthermore, the interpolation effect provided by the 
regularization is illustrated in Figure 6. The left image 
corresponds to the raw data (frequency / azimuth) while the 
right image displays the Fourier transform along distance of the 
reconstructed scene S . The strongest echoes are right 

extrapolated while a partial but sufficient interpolation is 
provided on small echoes from background. 

Without reconstruction With L1-modified regularization

 
Figure 7.  Left: MF without interpolation. Right: regularized reconstruction. 

As discussed in section II.C, the sparse sampling leads to a 
loss of processing gain on receive, thus requires a higher SNR 
at sampling level. However, this loss can be fully compensated 
by transmitting signal only in the processed sub-bands on 
receive. In the case of a step waveform frequency, this means 
increasing the pulse duration of each step (the compression 
ratio). There is no wasting of power and the average radiated 
power (thus the cost) remains exactly the same as for a full 
bandwidth.  

The coherence matrix (6), corresponding to the sensing 
scheme of Figure 6. , is displayed Figure 8. The coherence 
according to (5) is about 0.39. 

HM

 0.387

 
Figure 8.  Coherence matrix 

In this example, mathematical tools, similar to those used in 
the CS framework, were used. However, the acquisition 
process is not really incoherent and we do not make really CS, 
that is to say a compressed acquisition. 

B. Range ambiguities removal for MPRF Radar 

1) MFRF waveforms 
Such a waveform does not provide direct measurements, 

neither in range nor in Doppler. It is usually utilized with a 
staggered PRF scheme. Several (N) PRI are sent according 

to: ii nPRI   where in  is a set of Q co-prime integers. 

2) Classical range unfolding methods: 
Let R the unambiguous quantized delay (range) of the 

target. For each set of  QQnPRI ii ,1  , we can only 

measure the remainders of the division of R by in . That is to 

say, the set of measurements is ii nRr mod .  

By adopting the framework of representation of CS: 

 The output S is a “long” and sparse N-vector 

corresponding to the unfolded range domain. It 
contains either binary digits or values corresponding to 
the non-ambiguous locations of the targets.  

 The representation basis Ψ is the identity matrix )(NI : 

the sampling basis and the representation basis are the 
same. The matrix Ψ  enumerates all the possible 
locations of a target from 1 to N. 

 The sampling matrix Φ is obtained as indicated in 
Figure 9.  

 
Figure 9.  Sampling matrix for MPRF radar 

o By concatenating horizontally, for each iPRI , 

)( inI until reaching a columns number greater or 

equal to N. The resulting matrix is then truncated 

to the size (N, in ). 

o By stacking vertically the matrix obtained at last 
step for all PRI. We get a (M, N) matrix 

with 




Qi

inM

,1

. 

 The measurement M-vector y is obtained by stacking 

Q vectors containing either binary digits or values 
corresponding to the ambiguous locations of the 
targets: 



(13) 
SΦSΨΦy 

 

The basic unfolding algorithm consists in calculating (14) 
then to apply a threshold. 

(14) yΦyΦΨS
TT  1ˆ  

This basic algorithm works correctly as long as there is 
only one target. In the case where there are at least two targets 
or noise, ghost targets appear. This is because ambiguous 
responses from distinct targets, or due to noise, create spurious 
or wrong summations in (14). This effect is quite similar to the 
occurrence of side lobes responses with an incomplete 
sampling (Figure 10. ). 

1 Target

Ghost responses (eq. to side-lobes)

 

3 Targets False detection

 
Figure 10.  Ghost targets due to wrong summations. Q = 6 differents PRI 

based on co-prime numbers. Detection threshold is 3. Top - one target: 

sidelobes occurs but they are too low to create wrong detection. Bottom – 3 

targets: false detection appears. 

3) Ambiguities unfolding based on a CLEAN approach 
The issue of ghost targets in the case of basic unfolding 

comes mainly from the fact that one target before unfolding 
can contribute in the occurrence of more than one target after 
unfolding. 

Nowadays, algorithms more efficient than the basic 
unfolding algorithm are employed. One of them is based on a 
similar approach to the CLEAN method. Its principle is to 
iterate the following steps: 

a) Set the index of validated output i = 1. 

b) Calculate yΦS
T . 

c) Rank the non-null outputs within S according to a 

relevant ranking criterion (e.g. the value of each 

element of S ). 

d) Retain as valid output )(is the element of S having the 

highest rank, then set to zero all elements in the 

measurement vector y that have contributed to the 

value )(is . 

e) Increment i = i+1 

f) If all remaining elements of S have nil value then exit. 

g) Otherwise do loop to b). 

As the scene is sparse, i.e. the number of targets to be 
detected is low; this algorithm requires only a small number of 
iterations. It is therefore very efficient in terms of computing 
resources provided there is sufficient memory to store the 
matrix S  andΦ . 

It is worth to notice that this method can be applied either 
in the classical “unfold after detect” approach ( y  elements are 

binary detections) or in “detect after unfold” approach ( y  

elements values depends on the received power; the threshold 
is then applied at S  level). 

4) CS solution to range unfolding 
The coherence matrix is shown in Figure 11. If the set of 

PRI is obtained from a set of co-prime number, the coherence 
matrix exhibits good properties for reconstruction using the L1 
minimization (diagonal structure and coherence = 1/N). 

N set co-prime numbers N set not co-prime numbers  

Figure 11.  Coherence matrix 

The use of CS solves the previous issue. Indeed, it search 
for the sparsest solution, that is to say the one that fit (13) 
without extra spurious summations. CS approach allows 
finding the best solution, but it requires much more computing 
resources that the method described at section 3). Moreover, 
some “special” extra information related to the operational 
Radar behavior is difficult to express with matrix algebra. 

Nevertheless, the use of L1 minimization for the range 
unfolding is really a good example of application of CS to 
radar. CS is here really used in its founding spirit, and not as a 
method of regularization of ill-posed problem as it is most 
often the case in Radar issues. 

C. Beam-forming with sparse array 

An interesting case study is constituted by the very large 
radio telescopes such as the “SKA” (Square Kilometer Array) 
radio telescope [10], Figure 12.  

 

Figure 12.  The SKA radio telescope  credit: SKA Organisation/Swinburne 
Astronomy Productions. 



Such a telescope is intended for imaging of galactic radio 
sources. The scene which is imaged is made of a few point-like 
sources surrounded by nothing. That is exactly a sparse scene. 

The first characteristic that is sought after is the angular 
resolution, which is why these systems extend over several 
kilometers in domain of radio waves. Then, the best sensitivity 
is looked for: the goal is to maximize the total surface of the 
receiving part of the array.  

It is obvious that with such overall dimensions, it is 
absolutely impossible using a non-lacunar array, therefore the 
maximum sensitivity of the system has to be sacrificed to 
enable its feasibility. This is why sparse sensing techniques are 
essential, hence the irregular appearance of the network. 

We do not know precisely what is the reconstruction 
method used on the SKA telescope. However, regardless of the 
reconstruction method, the irregularity of the array is 
necessary. 

Following the CS framework: 

 The scene to retrieve S is expressed in basis of cosine 

coordinates (Fourier basis). 

  The measurement vector is SΨΦy   where: 

o  Ψ is a kind of Fourier matrix 

o Φ  describes how the sparse sampling is done. It is 
the identity matrix where lines corresponding to 
missing receivers have been deleted. 

1) Basic Beam-forming solution (M.L. sense) 
The basic beam-forming consists in calculating: 

(15)  

This operation does not provide a single solution, if sources 
are well disposed that is to say if the sampling scheme meets 
the incoherence criterion, we get a peak response and side-lobe 
responses. 

In fact this problem is well known for a long time in radio 
astronomy [11]. The raw images are corrected using de-
convolution methods based on the point spread function (the 
“dirty beam”) of the system. 

2) Compressive Sensing solution:  
By using the CS concept, the reconstruction is given by: 

(16)  

This method provides a single (no side-lobes) and exact 
solution in noiseless conditions, if sources are well disposed. In 
fact, that is equivalent to the basic beam-forming with a 
sparsity constraint. 

IV. CONCLUSION 

The problems of the reconstruction of missing data and 
subsequent reduction of side-lobes are not a novelty. They are 
used in radio astronomy since 70’s and the regularization 
methods have been effectively used since 90’s, especially in 
medical imagery. The use of random sampling for 
reconstructing sparse scenes is also not new. The unfolding of 
MPRF ambiguities is a good example. 

In practice, the concept of CS is not a novelty of the 2010's. 
However around it, many researches are being conducted that 
have theorized the concept and are producing efficient L1-nom 
minimization algorithms. It would be a pity not to take 
advantage of this to efficiently solve ill-posed problems by the 
means of conventional regularization. 

Except the cases where the front-end and processing are 
distant or distributed, the main interest of CS in radar is not to 
reduce the incoming data flow (which is no longer really an 
issue with current digital technologies) but to reconstruct 
observed scenes when sampling cannot be ideal for practical 
questions. 

The current “fashion” about CS finally deserves to ask 
again the question of what is really needed, not for 
reconstructing a signal, but for directly extracting the useful 
information it contains. 
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