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2  / 2  / 24 Summary 

1. Compressive Sensing, Sparse Sampling, their utilities 

in radar applications. 

2. Radar “cases” 

 Broadband Applications with incomplete BW; 

 Example for fun - MPRF unfolding; 

 Sparse Arrays Issues. 

3. Conclusion 



3  / 3  / 24 What is C.S.? 

 Originally developed to directly acquire a compressed description of a 

sparse scene. 

 The sparse scheme ≠ Nyquist’s criterion 

 Sampling constrained to other criteria such as the RIP condition. 

 Leads to a reconstruction process involving the solve of an ill-posed 

problem. 

 Lot of mathematical studies on minimization algorithms 

(minimization of L1-norm especially). 

 



4  / 4  / 24 How Sparse Sampling may be useful in Radar. 

Out of its theoretical interest, what does C.S. bring really to the Radar? 

The usual case in radar = not to deal with compression/acquisition but 

with the sampling issues.  

 Three Radar cases dealing with missing data or sparse 

sampling :   

 Sparse Sampling in Frequency in broadband applications  

 Sparse sampling in Time-Range ambiguities  

 Waveforms issues: Example MPRF unfolding 

 Sparse sampling in Space - Antenna arrays issues: 

 Cost of large number of RF channels in DBF systems. 

 Space availability on platforms 

 

 

 



5  / 5  / 24 Sparse Sampling in Frequency (1/2) 

1st reason for using incomplete frequency BW: 

 Radio Regulations  and saving of spectrum resources: 

 Issue: In some bands (especially low bands for FOPEN applications), 

it is not possible to find enough continuous bandwitdh. 

 Ex.: SAR image with 30cm Doppler resolution  BW > 500 MHz 

 Solution: “Incomplete BW” 

 

 

 

 

The problem here is not to reduce the input data flow. 

The problem is to cope with unavoidably missing data. 
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6  / 6  / 24 Sparse Sampling in Frequency (2/2) 

2nd reason for using incomplete BW: 

 Range ambiguities when using stepped frequencies WF 

 Limited instantaneous BW  More affordable technologies, more flexible and scalable 

 

 

 

 

 

 Issue:  

 Number of steps is 𝑵𝒔𝒕𝒆𝒑 =
𝑻𝒐𝒕𝒂𝒍 𝑩𝑾

𝑰𝒏𝒔𝒕𝒂𝒏𝒕 𝑩𝑾
 

 Doppler processing requires that Cycle Repetition Interval (CRI) < Max. value. 

 𝑵𝒔𝒕𝒆𝒑 too large  range ambiguities occur. 

 

 

Solution: using fewer number of steps Sparse spectrum 

Radio Regulation requirements can be easily incorporated 
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7  / 7  / 24 Sparse Sampling in Frequency : SAR imaging application (1/6) 

What is really needed? 

 From a practical point of view, the need is not to reconstruct a sparse 

scene with a small number of random projections. 

 A useful SAR image is not a sparse scene! 

 The real need = to interpolate missing data corresponding to strong 

echoes that have side lobes because of an incomplete transmitted 

bandwidth. 

 But, each sub-band is properly sampled (Nyquist's rate). 

 So, the goal is to restitute both strong echoes and background 

without being corrupted by side-lobes from strong echoes. 

 Some candidate methods are: 

 Auto Regressive (AR) interpolation; 

 L1-norm regularization reconstruction methods; 

 Clean-Relax, etc. 

 

 

 

Goal = to interpolate, in frequency domain, the missing data ​​corresponding 

to strong point-like targets equivalent to a sum of sinusoidal signals. 
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A.R. interpolation of missing data from available sub-bands : 

 

 

 

 

 

 Final interpolation of missing data = weighted sum of left and right 

extrapolations. 

 

 

 

Only the signal corresponding to strong & discrete targets is reconstructed. 

 Applied after azimuth 

compression: 

 A.R. models provide 

extrapolations from left 

and right sub-bands. 

 Small number of “holes” 

 easy to mechanize. 

 Low computing req. 

 

P

 

r

 

o

 

c

 

e

 

s

 

s

 

e

 

d

 

 

 

B

 

a

 

n

 

d

 

P

 

o

 

i

 

n

 

t

 

 

 

t

 

a

 

r

 

g

 

e

 

t

 

s

 

 

 

s

 

i

 

g

 

n

 

a

 

l

 

 

 

f

 

r

 

o

 

m

 

 

 

s

 

u

 

b

 

-

 

b

 

a

 

n

 

d

 

s

 

 

 

(

 

f

 

r

 

e

 

q

 

u

 

e

 

n

 

c

 

y

 

 

 

d

 

o

 

m

 

a

 

i

 

n

 

)

 

E

 

x

 

t

 

r

 

a

 

p

 

o

 

l

 

a

 

t

 

e

 

d

 

 

 

s

 

i

 

g

 

n

 

a

 

l

 

 

 

f

 

r

 

o

 

m

 

 

 

l

 

e

 

f

 

t

 

 

 

s

 

u

 

b

 

-

 

b

 

a

 

n

 

d

 

s

 

E

 

x

 

t

 

r

 

a

 

p

 

o

 

l

 

a

 

t

 

e

 

d

 

 

 

s

 

i

 

g

 

n

 

a

 

l

 

 

 

f

 

r

 

o

 

m

 

 

 

r

 

i

 

g

 

t

 

h

 

 

 

s

 

u

 

b

 

-

 

b

 

a

 

n

 

d

 

s

 

F

 

r

 

e

 

q

 

u

 

e

 

n

 

c

 

y

Sparse Sampling in Frequency : SAR imaging application (2/6) 
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A.R. interpolation – real data 

 Full bandwidth  30% bandwidth 

missing 
 After A.R. 

interpolation  

Range 

Sparse Sampling in Frequency : SAR imaging application (3/6) 
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Another possible method: L1-modified Regularization 

 Range reconstruction applied after Doppler compression; 

 Input signal Y: received signal spectrum only in usable sub-bands; 

 Reconstructed range profile 𝑺:  

𝑺 = 𝐚𝐫𝐠𝐦𝐢𝐧 𝒀 −. 𝑭𝑭𝑻(𝑺) 𝟐² + 𝝀 𝑺 𝟏#  

To preserve image’s background: 𝑺 𝟏#=  𝒔𝒊 ² + 𝜺²  ⇒  
= L1 norm on strong signals
~L2 norm on small signals

 

  is the “concatenation matrix”. It removes from 𝐹𝐹𝑇(𝑺), some parts of the bandwidth 

where no data was gathered.  

  = I(𝑁)  where lines corresponding to missing data have been deleted. 

 “X = FFT(S)” may be written algebraically “X = .S”: 

  = Fourier basis matrix  𝑺 = 𝐚𝐫𝐠𝐦𝐢𝐧 𝑿 − .𝚿. 𝑺 𝟐² + 𝝀 𝑺 𝟏  

 That is mathematically one possible formulation for C.S. reconstruction. 

 

 

 

 

L1 regularization: not used as in CS approach (sparse random projections) 
Goal: interpolate missing data  lower side-lobes on point-like targets 

Patented algoritms. THALES, 2005, 2007.  

Sparse Sampling in Frequency : SAR imaging application (4/6) 
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L1 Regularization – Real data: 

 
Transmitted Frequencies 

Doppler 

Transmitted Frequencies 

Doppler 

As for the A.R. method, the signal corresponding to strong & discrete 

targets in Range is well reconstructed 

Sparse Sampling in Frequency : SAR imaging application (5/6) 

Note that, in this example, the holes are not randomly spaced but are 

periodic 

Transmitted Frequencies 

Doppler 
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L1 Regularization – Real data: 

 

Due to the modified L1 norm, point-like strong echoes are well 

reconstructed while the background details are preserved. 

Without reconstruction With L1-modified regularization 

Sparse Sampling in Frequency : SAR imaging application (6/6) 



13  / 13  / 24 Second case : MPRF unfolding (1/6) 

Measurement of ambiguous ranges, example: 

 NPRI  = 6 PRI corresponding to: n = 11, 13, 15, 17, 19, 23 range gates  

 Six co-prime numbers.  

 Range unfolding up to N = 100 unfolded range gates.  

 Measurement vector X:  

 Vertical stacking of NPRI  = 6 binary detections vectors (0 or 1) in folded 

range domain 

 

Dictionary matrix:  

 Sampling and reconstruction are using the same basis.  

enumerates all the possible locations of a target from 1 to N 

⇒  𝚿 = 𝑰(𝑵) 

Question: Is the compressive sensing approach useful for ambiguities 

solving ? 
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Measurement matrix  building: 

 For each PRI: 

 Horizontal stacking of identity matrix (range ambiguities for this PRI): 

𝐼(𝑛) 𝐼(𝑛) 𝐼(𝑛) … . 

 Truncation to get a rectangular matrix (N x n) 

 Vertical stacking of NPRI  = 6 rectangular matrix (N x n) 

Φ =
𝐼(𝑛1) 𝐼(𝑛1) 𝐼(𝑛1)

𝐼(𝑛2) 𝐼(𝑛2) 𝐼(𝑛2)
⋯

⋮

 

Second case : MPRF unfolding (2/6) 
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Basic unfolding consists in: 

 For each PRI: 

 To initialize a detection vector whose size is the unfolded domain; 

 To enumerates all possible locations for a given ambiguous pre-detection (0 or 1); 

 To write “1” in all possible locations. 

 For the set of N PRI: 

 To sum all of the NPRI detections’ vector 

 To validate an unfolded detection if its score is greater than K (K out of N criterion) 

 Algebraically, this is equivalent to calculate: 𝑺 = 𝚿−𝟏𝚽𝑻𝑿 = 𝚽𝑻𝑿 
≥
<
 𝐾 

Main issue occurs in multi-targets condition: 

 Indeed, one pre-detection may contribute to more than one unfolded 

detections.   

Basic unfolding may create ghost targets in multi-targets 

conditions. 

Second case : MPRF unfolding (3/6) 
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Matrix Θ𝑇Θ acts as “ambiguity function” of unfolding: 

 

 

 

 

 

 

 The basic unfolding is to calculate the score of association of pre-

detections from NPRI ambiguous domains. 

 Then a threshold (k out of NPRI) is applied. 

X : true location,Y : possible location, Z: association score [0, 6] 

N set co-prime numbers N set not co-prime numbers 

Second case : MPRF unfolding (4/6) 
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1 Target 

Ghost responses (eq. to side-lobes) 

What can bring C.S. concept to MPRF unfolding? 

 With basic unfolding: 

 

 Single target case: 

 

 

 

 

 

 Multi-target case: 
3 Targets False detection 

The “sparsity” constraint provided by the L0 or L1 minimization avoids 

false recombination (only the sparsest solution is retained). 

Second case : MPRF unfolding (5/6) 
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Is CS concept really useful in this case? 

 In practice, the unfolding is performed both in Range and Doppler. 

 Mathematics of CS thus lead to manipulate very large matrix. 

 Modern algorithms may operate as follows: 

 

 

 

 

 

 

 

 

 This method proceeds in a similar idea as CLEAN algorithm. 

 L1 minimization leads to similar results but with higher complexity. Moreover, 

some “special” criteria are difficult to express with matrix algebra. 

Initialize 𝑺0 = 𝚽𝑻𝑿 
Loop: 

 (Apply ranking criteria on elements of S) 

 Retain as unfolded detection the highest rank with S(i)  K 

 Then, set S(i) = 0 

    If all elements are < K then exit 

 Return in folded domain 𝑿 = 𝜱. 𝑺 
 (Apply ranking criteria on elements of X) 

 Set all non-null entries to 1 

 Return in unfolded domain 𝑺 = 𝚽𝑻𝑿 
End Loop 

Second case : MPRF unfolding (6/6) 



19  / 19  / 24 Sparse Sampling in Space– Accurate DOA measurement (1/4) 

Ex. Air Detection System: 

 

 

 

 

 Need to steer devices High angular accuracy  Large 𝑫/𝝀 array size 

 Doppler processing:  

 Only a few targets within a Doppler bin; 

 Fast close-in targets  Targets on thermal noise Doppler region; 

 No critical requirement on antenna due to clutter rejection  Side-lobes are not an issue. 

 We face to a sparse scene, affordable cost & complexity  sparse array 
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But “sparse array” means “less antenna surface”, so less received power. 

Concept is viable only if the sensitivity is not an issue for short range 

systems   
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Another similar study case: the SKA radio-telescope 

 What it is first searched for? : Angle accuracy and resolution. 

Need for a very large array; 

 How are the radio sources? :  

 Spatially isolated from nothing; 

 Frequency separated : The observed wavelengths depend on phenomena involved in. 

 Is a fully filled array possible ? No, impossible to cover hundreds of km²! 

Sparse and random array = the only affordable solution. 

Sparse Sampling in Space– SKA Radio-telescope (2/4) 
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Beam-forming vs. C.S. approach : 

 The scene of sources is S expressed in basis of angle coordinates 

  The measurement vector is 𝑿 = 𝚽.𝚿. 𝑺 where: 

 𝚿 is a kind of Fourier matrix 

 𝚽 describes how the sparse sampling is done. =𝑰(𝑵)  where lines corresponding to 

missing receivers have been deleted. 

Basic Beam-forming solution (M.L. sense):  

𝑺𝑩𝑭 = 𝚿−𝟏 
Matrix NxN  of
steering vectors

         𝚽𝑯𝑿
Fill with zero entries
to get size N

 

Not a single solution, if sources are well disposed, peak response and side-lobes.  

Compressive Sensing solution:  

𝑺𝑪𝑺 = 𝐚𝐫𝐠𝐦𝐢𝐧  𝑺 𝟏  𝑠. 𝑡. 𝑿 −. 𝚿. 𝑺 𝟐 < 𝜎 
Single (no side-lobes) and exact solution in noiseless conditions, if sources are well 

disposed. In fact, that is equivalent to bacic beam-forming with sparcity constraint 

Sparse Sampling in Space– Accurate DOA measurement (3/4) 
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Beam-forming vs. C.S. approach : 

 After Doppler filtering and clutter removing, the probability for 

having more than one single echo in a range-Doppler cell is low. 

 In most of cases, the “basic” beam-forming at M.L. sense 

followed by a conventional detection process is sufficient:  

 Threshold and selection of the peak response. 

 Accurate DOA can be obtained from a kind of “mono-pulse”. 

 

However, in some cases, the exact reconstruction using 

the L1-norm minimization can help. 

 
Concept of sparse and random sampling on one hand, and L1-norm  
minimization on the other hand are two separate things: L1-norm 

minimization is only an elegant method to solve a problem, not a new 

concept itself. 

Sparse Sampling in Space– Accurate DOA measurement (4/4) 



23  / 23  / 24 Conclusions 

 Reconstruction of missing data and reduction of side-lobes are not a 

novelty. They are used in radio astronomy since 70’s and 

regularization methods have been effectively used since 90’s. 

 The use of random sampling to reconstruct sparse scenes is also 

not new. Unfolding of MPRF ambiguities is a good example. 

 Finally, the concept of CS is not a novelty of the 2000's. However  

around it, many research are being conducted that have theorized 

the concept and are producing efficient L1-norm minimization 

algorithms. 

 Except cases where front-end and processing are distant or 

distributed systems, the main interest of CS in radar is not to reduce 

the incoming data flow (which is no longer really an issue with 

current digital technologies) but to reconstruct observed scenes 

when sampling cannot be ideal for practical questions. 

 The current “fashion” about CS deserves asking again the question 

of what is really needed, not for reconstructing a signal, but to 

directly extract the useful information it contains. 
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