
Compressive Sampling Real-time Scalable Radar
Signal Reconstruction Core

Michele Barbato, Gian Carlo Cardarilli,
Marco Re, Ilir Shuli

Department of Electronic Engineering
Second university of Rome ”Tor Vergata”

Rome, Italy
Email: shuli, cardarilli, re @ing.uniroma2.it

michele.barbato@mail.it

Filippo De Stefani, Francesco Peluso, Valerio Tocca
Engineering dept

SELEX Electronic Systems
Rome, Italy

Email: fdestefani, fpeluso, vtocca @selex-es.com

Abstract— The recently introduced Compressive Sampling
(CS) technique can be used for reducing the speed requests for the
ADC in modern radars. CS algorithm includes a reconstruction
phase that is very critical in terms of real-time requirements.
This paper presents a scalable hardware reconstruction core
implemented in FPGA technology, aimed at real-time CS signal
reconstruction.

I. INTRODUCTION

Nowadays, for radar systems it is both dramatically im-
portant to be able to process signals with large instantaneous
bandwidths, in order to achieve outstanding range resolutions,
and to be able to sample at high RF frequencies, in order to
avoid the costs and the SNR degradations related to mixer
based conversions. In order to fulfill these requirements, fast
analog to digital converters (> 1Gsps) and clever DSP
algorithms are needed in order to manage the huge amount of
samples generated. It is however difficult to design and realize
fast sampling ADCs, maintaining good SNR (directly related
to the number of bits of the ADC) and SFDR performances.
Traditional radar scenarios present some characteristics that
allow the use of the theory of compressed sensing [1] to
solve the above issues. Compressive Sampling (CS) techniques
could thus be introduced in order to dramatically reduce the
number of samples needed to reconstruct the echo signal, re-
ducing the performance required for the ADCs . Consequently,
slower ADCs could be used to properly reconstruct the echo
signal received.
An important part of the compressive sampling technique is
the signal reconstruction phase. Its complexity, that results in
a extremely heavy digital signal processing, makes this task
very critical for an effective implementation of CS. In addition,
many applications have tight real-time requirements. Among
these applications, we will consider the radar systems, where
each range cell must be processed in few µs.
However, only a small number of papers are present in litera-
ture regarding hardware CS signal reconstruction, while most
of the papers use off-line software processing. None of the
reference papers [2], [3] addresses real-time implementations.

Partially supported by Finmeccanica SpA.

They use FPGA (or ASIC) implementations to recover CS
images and evaluate the maximum clock frequency the system
can run. However none of the authors indicates how to modify
the core and what could be the performance in the case of
larger CS systems.
There exist many signal reconstruction algorithms. The most
common are: L1-minimization and Greed Orthogonal Match-
ing Pursuit [4]. The latter of the two has lower recon-
struction performance but it is more suitable for hardware
implementations. Moreover the Greed OMP algorithm can
have a deterministic stopping criterion which makes real-time
implementations feasible.

The Greed OMP algorithm implementation can be divided
into two phases: dictionary atom identification and coefficient
value calculations. The first phase needs a great number of
multiplications while the second one presents serial operations
that can be easily executed by a MPU. The authors have
created a scalable signal reconstruction core implementing
this algorithm. The core can be tailored to the specific sizes
of the system, taking into account the dictionary size and
the sparsity level. Moreover, in this work also a fixed-point
dynamic analysis was performed and the sensitivity to the
data truncation has been evaluated for each algorithm phase.
Fixed-point analysis is very important in FPGA implemen-
tation, since high-performance architectures cannot be easily
implemented using floating-point units. In general floating-
point units are very resource hungry and often they don’t are
the unique solution for preserving the algorithm accuracy.

The reconstruction core has been implemented in a FPGA
and the performance has been evaluated. The matrix inversion
is based on the QR decomposition method. This method brings
great benefits in terms of speed without affecting the system
performance, see [3]. Finally the paper evaluates the obtainable
radar system performance and analyzes how to scale the
system using bigger FPGA chips.

II. GREED OMP ALGORITHM

In compressive sampling, sparse signals are represented as:

f =

n∑
i=1

xiψi (1)

where f indicates the signal of interest, ψ indicates the rep-
resentation basis and x is the coefficient sequence. Measured
values are taken according to:

yk = 〈f, φk〉 , k ∈M < N (2)

To find the non-zero values of vector x the equation

y = RΦΨx (3)

must be solved, where R is a m × n matrix that randomly
extracts M rows from Ψ. Equation 3 can be written as y = Ax
where A = RΦΨ. The Greed OMP algorithm is described
below.

1) Initialize the residual R = y, the index set Ã = ∅ and the
iteration counter t = 1

2) Find the index λt which is most correlated to A by
solving the optimization problem

λt = arg max
j=1..N

|〈Rt−1, Aj〉| (4)

3) Update the index set Λt and column set Ã

Λt = Λt−1 ∪ λt (5)

Ã =
[
Ã Aλt

]
(6)

4) Calculate the new residual according to

Rt = Rt − (Ãt · Ãt
T

)Rt−1 (7)

5) Increment t and return to step 2 if it is less than m
6) Solve the least squares problem to find x̂ for the indices

in Λ
x̂ = argmin

x
‖Ãx− y‖ (8)

Fig. 1. Greed Orthogonal Matching Pursuit algorithm schematic.

Two different phases can be distinguished in the Greed OMP
algorithm. During the first phase are identified the components
(columns) of matrix A that best explain the measurement
vector y. In the second phase, the columns of matrix A,
identified during the first phase, are grouped together in
the matrix C. The matrix C is then inverted to solve the
least squares problem and calculate the values of non-zero

coefficients of vector x. The two phases and their inputs and
outputs are depicted in figure 1.

Taking a closer look at step 2 of the Greed OMP algorithm,
it emerges that the residual vector needs to be multiplied with
all the columns of matrix A at every algorithm iteration. This
leads to a very big number of multiplications needed even
for small dimension problems. Nowadays microprocessor units
have advanced floating-point hardware multipliers but their
number is generally limited (one or more in case of multicore
processors, but anyway the number is very small). Even the
fastest microprocessor cannot handle big dimension problems
and is not able to solve the problem in real-time. GPUs, on
the other side, provide plenty of hardware multipliers but
they have memory bottleneck problems with these kind of
systems [5]. However modern FPGA chips feature a great
number of hardware multipliers. The most interesting feature
of FPGAs is the fact that these chips are fully configurable
and can be reconfigured for matching the specific application
or algorithm. Moreover modern FPGAs have also built-in
microprocessor cores, like the dual ARM cortex A9 present
in the Xilinx Zynq FPGA family [6]. It is a full featured
microprocessor core with L1 and L2 level cache memories
and also with a full bunch of peripherals like DDR memory
controllers, SPI, USB, etc. . . . These kinds of FPGAs are
suitable for our application since the programmable fabric
(a.k.a. FPGA resources) can have direct access to the ARM
core L1 cache, overcoming memory bottleneck problems. The
microprocessor also includes the NEON floating-point unit,
suitable for serial floating-point operations. In the next section
the hardware implementation of the Greed OMP algorithm will
be discussed.

III. ALGORITHM IMPLEMENTATION

In this section we show the implementation of the Greed
OMP algorithm discussed in the previous section. We will
show how the developed core can be configured to adapt it
to the specific FPGA chip and to the compressive sampling
problem at hand. The authors decided to implement only the
first phase of the Greed OMP algorithm in hardware, leaving
the second phase to be executed by the ARM microprocessor
core. This choice depends on the processing characteristics:
during the first phase the algorithm executes operations that
can benefit from parallel hardware, like the correlation be-
tween the A matrix and the Residual Vector. During the second
phase, a least squares problem must be solved. The solution
is based on matrix inversion operation which is a serial task,
for which MPUs are highly optimized.

The implemented hardware architecture for the first phase is
shown in figure 2. The inputs are the measurement vector Y
and the matrix A. Both these data are stored in memories
with serial inputs. This solution allows to directly attach
the memories at the peripheral bus of the MPU. These two
memory blocks are custom designed for this purpose as they
have serial input for memory loading but parallel output in
order to speed-up the elements multiplication between the
A matrix columns and the measurements vector Y , during

Fig. 2. Greed OMP first phase implementation.

the first iteration, and the residual vector, subsequently. The
residual memory is separated from the measurement vector
memory Y since the core outputs also the ÃTY product. This
value is an important factor and it required for solving the
least squares problem during the second phase. It is calculated
more efficiently in hardware. Moreover the core also outputs
the C = ÃT Ã matrix.

The most important hardware element for the implementa-
tion of the first phase of the algorithm is represented by the
Bank of Mults block in figure 2. It is composed of configurable
hardware multipliers that perform several multiplications in
parallel at each clock cycle. The index calculation block finds
the column of A that has the maximum correlation with the
residual. The output of this block is used to update the residual
for the next algorithm iteration. Finally, there is a finite state
machine block that triggers the various operation timing and
controls the overall core functionalities.
The proposed core is configurable although the configuration
cannot happen at system run-time. The hardware implemen-
tation is described by a set of VHDL files. These files can
be configured using scripts. Changing some parameters in
these scripts changes the system parameters such as A matrix
dimensions, which are directly related to the compressive
sampling problem N and M parameters. Another parameter
that can be changed is the number of bits used for the
representation of vector Y and the entries of the matrix A.
This representation is always fixed-point, since the input values
come from some hardware devices, such as an fixed-point
analog to digital converter.
Using these scripts the system can be configured by changing
just few parameters. The limitation of our system resides in
the fixed structure of the multiplier bank, the number of used

multipliers has to be always equal to the number of elements of
the measurement vector Y and the bank can use only multiplier
embedded in the FPGA chip. This second constraint is not a
very strict limitation since there are FPGAs on the market with
a huge number of multipliers, such as some Virtex 7 FPGA
chips that feature 3600 hardware multipliers.
Phase two of the Greed OMP algorithm is implemented into
the ARM core. In this case data are represented in floating-
point format. The scope of this representation is twofold, in
this case the core doesn’t take speed advantages by using
fixed point multiplications and, moreover, the procedure of
matrix inversion tends to be unstable if a very large fixed-
point wordlenght is not used. The implementation on the

Fig. 3. Greed OMP second phase implementation.

ARM core is shown in figure 3. Basically the ARM core
has two interfaces toward the Y vector memory and the A
matrix memory for loading. It has also memory interfaces
for the ÃTY and C memories. The linux operating system,
that runs on the processor, sees these memories like separated
peripherals and not as a hardware accelerator. The usage of
the operating system allows for easy control of operations
using a terminal interface and also allows access to external
memory for input and output data storage. The program runs
as depicted by the flow chart in figure 4. The processor
loads the input data from external SD card into the memories
storing Y and A and starts the execution of phase 1. When
phase 1 is completed the hardware accelerator triggers an
interrupt and the processor reads the results of phase 1 from
the memories C and ÃTY . After that, the processor solves the
least squares problem using QR decomposition algorithm for
matrix inversion. At the end the results are stored again into
the external memory for further consultation.

IV. RESULTS

For evaluating the designed core we implemented a com-
pressive sampling problem using Y = 8 measurements,
expressed as complex data, and an 8 by 64 dictionary matrix
A with complex values as well. The implementation results
that are shown in table I. The sparsity of the problem is user
definable, from 1 to 4 in this particular case, but the core
doesn’t have limits regarding this parameter. The core for
phase 1 has an input port for the sparsity definition, before the
elaboration start. In phase 1 core runs at a maximum frequency

Fig. 4. Implemented system flow chart.

TABLE I
HARDWARE ACCELERATOR RESULTS.

Compressive Sampling Problem
Variables Complex
M 8
N 64
Sparsity Run-time definable
Phase 1 hardware implementation
Data Complex
FMAx 216 MHz
Mults 34
LUTs 28,000

of 216 MHz into the ZC7Z020 device and it uses 34 embedded
multipliers and about 28,000 LUTs. The number of multipliers
(34) is related to the complex definition of the data. This
corresponds to 4 multipliers for every complex multiplication.
Though it is possible to use only 3 multipliers for a complex
multiplication the authors chose the 4 multipliers implementa-
tion for performance purposes. This brought the core to run at
more than 200 MHz whereas the fastest FPGA implementation
in literature is 85 MHz [3]. The number of LUTs occupied
by the phase 1 accelerator is high but this number doesn’t
scale linearly with the dimensions of the compressive sampling
problem. The ARM processor runs at 866 MHz, so inverting a
small matrix (e.g.: 6 by 8) is not a problem. Our architecture
allows pipelining so phase 1 and phase 2 can be executed in
parallel.
The drawback of our present system is the use of GPIO for
the implementation of the memory interfaces between the
processor and the accelerator that limits the bandwidth to about
7 MB/s. However this limitation will be removed in the future
implementation using more efficient interfacing protocols .

V. FINAL CONSIDERATIONS AND FUTURE WORK

In this paper the authors showed a scalable architecture for
the reconstruction of compressive sampling signals aimed at
real-time processing of radar signals. The architecture is faster
than the FPGA state-of-the-art implementations present in the
literature. The architecture aims at a clever resource usage,
exploiting the parallelism of the FPGA, where it gives the
major benefits, and the fast sequential operations offered by
microprocessors, where this kind of processing is required.
Future work will include the use of the Snoop Control Unit
to speed-up communication between the microprocessor and
the accelerator.

REFERENCES

[1] E. Candés, M. Wakin, ”An introduction to compressive sampling”, IEEE
Signal Processing Magazine 25(2), pp. 2130, 2008.

[2] A. Septimus, R. Steinberg, ”Compressive sampling hardware recon-
struction”, Proceedings of 2010 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 3316-3319, 2010.

[3] J.L.V.M. Stanislaus and T. Mohsenin, ”High performance compressive
sensing reconstruction hardware with QRD process”, IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 29-32, 2012.

[4] J. Tropp and A. Gilbert, ”Signal recovery from random measurements
via orthogonal matching pursuit”, IEEE Trans. on Information Theory,
vol. 53, no. 12, pp. 46554666, 2007.

[5] M. Andrecut, ”Fast GPU implementation of sparse signal recovery
from random projections”, 2008. [Online]. Available: http://www.arxiv.
org/PS cache/arxiv/pdf/0809/0809.1833v1.pdf

[6] Xilinx Zynq FPGA family page http://www.xilinx.com/content/xilinx/
en/products/silicon-devices/soc/zynq-7000.html

http://www.xilinx.com/content/xilinx/en/products/silicon-devices/soc/zynq-7000.html
http://www.xilinx.com/content/xilinx/en/products/silicon-devices/soc/zynq-7000.html

	Introduction
	Greed OMP algorithm
	Algorithm implementation
	Results
	Final considerations and future work
	References

