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Abstract—In this article we discuss the frame-
work of Herman-Strohmer paper on CS-radar [4]
proposing certain directions of generalizations. In
particular we consider a rectangle time frequency
grid of non-prime type, non-Allotop carrier signals
of the length non-equal to the length of time grid,
incoherent carrier and grid frequency units and
the influence of 1 /7'2 decay of the amplitude of
the reflected signal onto the performance of the
compressed sensing algorithm. For all these gen-
eralizations we perform the numerical simulations
checking the limitations of the CS-algorithm.

I. INTRODUCTION

The signal processing technique known as the
Compressed Sensing (CS) enables the recovery
of a sparse signal on the basis of an incomplete
information about it. Roughly speaking a sparse
signal 9 € RY can be recovered on the basis of
a small number of measurements b = Az, € R¥,
where K < N. The precise mathematics that
stands behind the above statement provides the
conditions on K, N and the matrix A together with
the precise formulation of the sparseness condi-
tion for which the recovery may be performed.
Furthermore it gives rise to the probabilistic es-
timation for the exact recovery to occur as well
as the implementable algorithms that realizes the
recovery - for the details of the aforementioned
mathematical issues see [1], [2] whereas for the
explanation of the algorithm implementation see
[3]. Soon after the discovery of the mathematical
theory of the compressed sensing M.A. Herman,
T. Strohmer in [4] noticed the potential application
of CS for the high resolution radar. Since our
paper strongly uses the framework of [4] we shall
sketch its content in the next sections whereas in

the next paragraph we shall briefly recall the decay
character of the electromagnetic waves which we
then integrate into the CS - radar.

The wave equation describing the propagation
of the electromagnetic wave (E, ) is of the form
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Taking an arbitrary function f one gets a 1/r
decaying spherically symmetric solution of the
electric part of the field (the magnetic part is
described similarly)
pop fr=ct)
r

In the case of the reflection of the wave from
a target we get the 1/7? decay of the reflected
signal amplitude. This decay character will be then
integrated into CS-radar.

II. HIGH-RESOLUTION RADAR VIA
COMPRESSED SENSING

In order to present the idea that lies behind the
radar application of the compressed sensing we
consider a certain configuration of K objects of
a given distances and velocities. The data on the
distance, velocity and reflection coefficient may
be represented on the time-frequency plane: the
distance x of a given object gives rise to the time
delay variable ¢ = 2z/c, the velocity v gives
rise to the Doppler shift p = —2wvpu,./c (where
Wy is the carrier frequency) and each object is
characterized by a reflection coefficient s; ,. In



particular s; ,, = 0 corresponds to the lack of an
object at the point of coordinates (¢, tt).

Let us now consider a radar that illuminates the
space with an electromagnetic wave which is then
reflected from the targets and registered by the
antena. In order to perform the signal processing
we introduce the time-frequency cut offs and dis-
cretize the time-frequency plane introducing the
N x (2M + 1) grid - N corresponds to the time
shift grid and the oddness of the number 2M + 1
reflects the fact that the velocity may be either
positive or negative or zero. Clearly the grid cor-
responds to the choice of time and frequency units
which we denote by ¢y and pps. The range cut off
is then given by Nct whereas the frequency cut
off is M s (the frequency ranges from —M iy
to +Mpups while the time delay ranges from ¢y
to Nty). Note that in [4] the authors assumed [N
to be prime and 2M + 1 = N, which we drop in
our paper. Using the N x (2M + 1) grid, the con-
figuration of the objects, their velocities and the
reflection factor is may be represented by the dou-
ble index sequence si; € C, k € {1,2,...,N},
le{-M,—-M+1,...,+M}. Let us consider
the periodic signal f of the period T, = 1/u,
that is emitted by the CS-radar. It is reflected
from the objects and the echo is registered by
the antenna. The reflected signal is then probed
with the probing coefficient P. Using the Fourier
analysis we represent the emitted signal in the
form of the Fourier series:

L—-1
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The registered echo is the superposition of the
echos reflected by the objects: the object repre-
sented by the (k,!) point on the time-frequency
plane reflects the following signal
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where we put the 1/k? - decay factor alluded in
introduction. Absorbing the factor e2™"*#mtN jnto
sg; and introducing the phase w = e~ 2™ Tr/P
we see that the echo of the (k,!) object measured
at the n-th moment is given by

Skl

= ((n — kPty/T,)T,/P)w™.

Defining
A = Pty/T, ey
we get the echo of the form
% ((n — kAT, /P)w™. 2)

Let us note that in the framework of the paper
[4] we have P = N, w = e2™/N and A = 1
and 7, = Nty. This mathematically convenient
assumption seems to be rather difficult to justify
in the context of the CS-radar application.
Having fixed the above context and ignoring
T,./ P factor in (2) we see that each object provide
the linear transformation of the emitted signal
% (n — kA)w™.
Summing up with respect to (k,l) we get the echo
at the n-th probing moment

3 S~ kA

Kl
Measuring the echo at the moments
{ni1,na,...,nr} where I is sufficiently large we

address the problem of recovering sj; out of the
measured echos. Provided that sj; is sufficiently
sparse we shall in the next sections test the
compressed sensing algorithms performance on
Sk recovery in our framework.

The last issue that we would like to discuss
in this section is the form of the emitted signal
f. In the framework of the paper [4] the authors
assumed f to be of the Alltop form. Since we
dropped the primness assumptions for the time
grid N we had to drop the Alltop signal as well.
Instead we have used the signal f which is random
in the range of the period and then periodically
repeated. As the general theory suggest such a sig-
nal with a high probability should give rise to the
exact recovery of the targets configurations which
we confirm on the level of numerical simulations.

III. SIMULATION RESULTS

Having the Herman-Strohmer framework an-
alyzed and slightly extended we performed the
simulations confirming the applicability of the CS-
techniques in our context. Let us briefly analyze
the results of the simulations referring to [5] for
more details. In the simulations described below
we ignored the 1/r? decay factor - its influence



on the CS-algorithm will be discussed in the next
section.

e« We performed CS-radar simulations using
rectangular time-frequency grid with the non-
prime time grid N. In order to do this we had
to drop the Alltop signal using the random
Bernoulli signal periodically repeated. The
CS-algorithm performed well for the signal
that is sparse enough.

e We performed CS-radar simulations using
A # 1 (see Equation (2)). The CS-algorithm
performed well as long as A and the probing
coefficient P are relatively prime.

o We performed CS-radar simulations using
the phase factor w = e 2™#mTr/P yith
different choices of upT,./P - factor. The
CS-algorithm performed well as long as w
does not generates a cyclic group of order
smaller then 2M + 1.

o Finally dropped a group of measurements
and register the reflected signal in randomly
chosen instances. There are limitation with
respect to the relative size of the dropped
measurements but we checked that within
a certain range the CS-algorithm performs
well.

IV. CS-RADAR AND THE 1/r% DECAY

In this section we shall check the influence
of 1/r2-decay of the reflected signal amplitude
onto the performance of the CS-algorithm. We
consider two targets having the same reflection
coefficients s; = s = 1. The first object is
kept in the vicinity of the radar on the time grid
n = 3 while the position of the second object
varies from 4 to 95. Using the CS-algorithms we
performed the recovery of the signal using two
versions of the algorithms: Min-/; with bounded
residual correlation and Min-/; with equality
constraints (for the details concerning the algo-
rithms we refer to [3]). There is striking difference
of the time-scale performance of the algorithms:
the first needs Ssec whereas the second 120sec for
the recovery of the signal. Besides this difference,
both of them performs well - we attach three
exemplifying figures of the recovery for each of
them.

In the legend of the next figures n denotes the
position of the second objects. The time grid N =

100 whereas the frequency grid M = 31.
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Recovered signsl V. THE ACCURACY OF SIGNAL RECOVERY

The simulations described in previous section
suggests that CS-algorithm is able to recover the
sparse signal even when the numbers appearing
in the signal are of the different scale: the signal
from the second object when registered from the
distance N = 90 is approximately 10~* weaker
then the signal from the first object. Motivated
by this observation we performed the simulations
focused on this issue. To be more precise we
kept the first object of the reflection coefficient

pistence o Dosppler st s1 = 1 in the distance n = 4 whereas the second
object is placed at the distance n» = 50. The
Fig. 4. Min-l; eq. constraints , n = 5 reflection coefficient of the second object varies:

sy =1,1/10,1/100,...,1077.
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Fig. 6. Min-I; eq. constraints, n. = 90 On the above figures we may see the ratio



of the recovered signal coefficient versus the ac-
tual reflection coefficient. The X-axis represents
the reflection coefficient in the inverse log-scale
while on the Y-axis we have the corresponding
ratio. The simulation were performed for two
CS-algorithms used in the previous section. We
may see that the Min-/; eq. constraints performs
slightly better then Min-/; bounded res. corr.,
Srec/$ getting accurate recovery for k = 1,2, 3.
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