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Abstract— Compressive Sensing (CS) is presented in a Bayesian 

framework for realistic radar cases whose likelihood or priors 

are usually non-Gaussian. Its sparse-signal processing is model-

based and detection-driven, and also done numerically using 

Monte-Carlo methods. This approach aims for the stochastic 

description of sparse solutions, and the flexibility to use any prior 

information on signals or on data acquisition, as well as any 

distribution of noise or clutter, without the need for a closed 

analytic form of the Bayesian solution. This flexible Bayesian CS 

is shown by comparison with its closed-form predecessors. 
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I.  INTRODUCTION 

Compressive Sensing (CS) is refining a radar system utterly in 
the mathematics and engineering (e.g. [7], [9], [12] and [15]). It 

is optimized to information in received data rather than only to 
the sensing bandwidth (what is also being emphasized in the 
information geometry, e.g. [5]). Sparse-signal recovery (SSR) 
and analogue-to-information conversion (AIC) are major issues 
in CS, which are still being extensively investigated (e.g. [21] 
and [22]). Crucial mathematical and stochastic refinements that 
CS shall bring in radar are still to be revealed, especially 
regarding their practical aspects. Pursuing that practical CS in 
radar, Bayesian CS is preferred in radar because it is stochastic 
when treating noise, prior knowledge on signals or their data 
acquisition, and when providing estimation results ([19]). In a 
way, Bayesian CS is giving a fresh boost to exploring the prior 
knowledge in radar that started in the 50-ties ([23]).   

In existing Bayesian CS, the Gaussian distribution is often 
assumed because of the simplicity and the feasibility of a 
closed-form solution. In most real-world cases it is not realistic 
as e.g. in high-resolution radar that is especially relevant with 
CS. High-resolution echoes such as e.g. sea clutter can better be 
described with a long-tail distribution (e.g. [10]). Moreover in 
CS, even originally Gaussian measurements can easily become 
non-Gaussian because of the random acquisition. Such non-
Gaussian essentials lead us to a Bayesian approach based on  
Monte-Carlo (MC) methods, as already matured in particle 
filtering (PF, e.g. [13] and [15]). The MC approach in CS has 
also been studied in theory, e.g. for a universal goal in [3], for 
sparsity in [4] and [8], and for a combinatorial recovery in [16].  

In this study, we introduce a practical MC-based Bayesian 
CS in radar. The numeric approach shall accommodate any 
prior knowledge on signals or their data acquisition, as well as 
any distribution of noise or clutter. Finally, the stochastic 
behavior of the estimates shall be available so that the radar 
back-end can be completed. The proposed Bayesian framework 

is presented after typical radar processing is recalled first at the 
system level in II. In III, their performance is compared on 
simulated data in a range-only case (kept basic for clarity). In 
IV, conclusions are drawn, and future work is indicated. 

II. CS IN RADAR PROCESSING 

Typical radar processing starts with matched filtering (MF) as 
in Figure 1. MF maximizes the signal-to-noise ratio (SNR) of a 

single target in radar echoes. When measurements y are 

described in a model: y = s + z, by nonrandom signals s in 

complex Gaussian noise z with zero mean and equal variances 

,  p(z|)   exp|z|
2
/), MF correlates y with a model of s.  

 

Figure 1.  Typical array-radar receiver without CS 

If s is described as in CS, by a linear model: s = Ax, A is a 

sensing matrix and x is a target profile. Thus, A contains a 

radar-signal model with a desired profile x. Such a model is 

known from the physics, and initially nonrandom. E.g., in 

range estimation, columns of A are time-delayed replicas of the 

transmitted signal (usually a linear chirp because of the optimal 

gain, e.g. [6]). A remains an echo-model with no compression 

in data acquisition from Figure 1. The MF profile xMF, xMF = 
A

H
y (H denoting hermitian) is computed using FFT and also 

decoupled for angle(s), range and doppler. xMF is the statistics 

in detection and estimation, based on the likelihood-ratio test 

(LRT) and the maximum likelihood (ML), respectively. Thus, 

this stochastic processing is formally based on the likelihood 

p(y|x) of the data y whose stochastic behavior comes from the 

Gaussian noise z (describing the receiver thermal noise). This 

basic model is further extended with many empirical stochastic 

techniques such as e.g. CFAR for detection in clutter.  

Finally, MF followed by detection, extraction/estimation 

and tracking, together with proper waveform design, large 

antenna arrays and a long observation time, can make very 

small targets at very long ranges be visible to radar. In such 

cases, the input SNR (at each antenna element) can be very low. 



 

Figure 2.  Array-radar receiver with CS 

CS will effect both front-end and back-end as indicated in 
Figure 2. The origin of CS is the assumed sparsity of a profile x 
because there are only some targets expected in x. 
Accordingly, its recovery can be done with less measurements 
in y as long as the sensing matrix A remains incoherent enough 
what means that the maximum inner product between different 
columns of A is low (e.g. [7]). The physical nature of A suits 
the incoherence well (e.g. [24]). In the front-end, there may be 
random or deterministic AIC. This information conversion is 
also legitimate in the digital domain although more tempting if 
done sooner. The conversion works as a fat compression matrix 
B that shrinks y (both A and z) into y = By = BAx + Bz = Ax + z 

where an Arial letter indicates the compressed version. The 
ultimate compression would apply before the reception, so that 
it cannot degrade SNR by effecting z. Input SNR is very low 
(even below 0dB, what is often ignored in CS). For the optimal 
processing gain, measurements y gathered over the whole 
observation time and antenna elements, support the sparse-
signal processing of a profile x over all its parameters: range, 
doppler and angle(s).  The matrix A as well as the SSR size 
becomes huge but well-arranged because of the straight signal 
models what makes SSR even achievable in real-time ([19]).   

A. Bayesian Approach in CS radar 

In the linear model (with no random compression), y = Ax + z, 

a Bayesian solution for x relies on the posterior p(x|y), i.e. the 
probability of unknown x given data y, p(x|y)=p(y|x)p(x)/p(y), 

built from a prior p(x) available on the unknown x, together 

with the likelihood p(y|x) and the evidence p(y). A Bayesian 

solution is usually hard to compute in a closed form because it 

involves many complicated integrals. In Bayesian CS, the 

sparsity of a target profile x delivers a prior p(x). When the 

sparsity of an Nx1 vector x is formalized by a multivariate 

Laplace prior p(x|), p(x|)    exp|x|1), the maximum a 
posteriori (MAP) estimator of x, written as:   

xMAP = minx { y-Ax+ h|x 

is typical SSR (e.g. [1] and [21]) with the Manhattan norm |x|1 
for promoting the sparsity and the Euclidean norm |y-Ax| for 
minimizing the Gaussian noise, together with a threshold h that 
balances between the two tasks. Although a Laplace prior 
creates the typical SSR in (1), realizations from a Laplace 
distribution are hardly compressible, i.e. their values decrease 
purely and moreover, even worse with more realizations ([2]). 
In general, a MAP estimator can also be interpreted as the 
minimum mean square error (MMSE) estimator (being the 
mean with a posterior) with a possibly different prior. With a 
Gaussian prior, the two Bayesian estimators are equivalent.  

In CS, an underdetermined linear system: y = Ax + z, can be 
solved by SSR in (1), i.e. M input observations in y could be 
enough for N outputs in x, M < N, because of the sparsity, i.e. 
only K non-zeros in x, K < M, and incoherence of A (e.g. [7]).  

 

 

 

 

Figure 3.  Principle of a Bayesian-CS algorithm (e.g. FL from [1]) shown on 

a test case by initial iterations (starting with MF) and the final result. The test 
case is generated as given in III, with 20dB output SNR and -10dB h from (1). 

Bayesian SSR iteratively assesses x from p(x|y) based on a 
multi-layer hierarchical prior p(x). Such a fast SSR algorithm 
([1]) was adapted to radar signals, and called complex Fast 

Laplace (cFL, [19]). In cFL, the prior p(x|) is built from a 

complex Gaussian prior for x and a  hyper-prior for the 
variance of x. cFL starts actually with xMF, i.e. all contributions 
A

H
y in the grid, and refines xMF in a number of iterations by 

selecting significant elements as long as the threshold h and 
convergence criteria hold. This selection is based on increase in 
the assessed posterior in each element, as shown in Figure 3. In 
this stochastic manner, not only the non-zeros but also their 
estimation errors are provided. cFL is also fast because of a 
greedy implementation based on optimization separable for 
each n, n = 1, N. Other algorithms can also be fast but they are 
not stochastic (e.g. [22]). Moreover, in cFL the output SNR and 
the processing gain remain the MF equivalents.  



 

 
Figure 4.  Gaussian  likelihood (black) and a resulting posterior (blue) with a 

norm-l1 sparsity prior (solid green lines) of  a non-zero (solid) and a zero 

(dotted) at different noise variances : a) 0.1 and b) 0.01. Comparable Pfa 

implies different sparsity parameters as well as thresholds h from  (1). 

There is also another class of Bayesian approaches in CS 
that involves priors on random sensing matrices, such as e.g. 
belief propagation and fast iterative message passing (see e.g. 
[21]). This Bayesian work is also heavily based on the 
Gaussian assumptions as needed for the closed-form solutions.  

B. Bayesian SSR Using Monte-Carlo Methods  

MAP or MMSE estimates can be numerically approximated by 
using a large number of Monte-Carlo (MC) realizations from 
an estimated posterior (e.g. [20]). Advances in MC techniques 
together with increasing computational power encouraged the 
development of feasible MC solutions, as e.g. with sequential 
MC methods, also known as particle filtering (PF) (e.g. [13] 
and [15]). The MC approach is also investigated in CS theory 
(e.g. [3], [4], [8], and [16]). Here the approach is more practical 
as aimed for the flexibility needed in a realistic radar system.  

When translating the MAP estimation from (1) into an MC 
version, the goal remains the same: to identify significant non-
zeros {xn(k)} in x satisfying (1) where n(k) indicates a column 

an(k) of A, and {n(k)} is a resulting support set K, k = 1, K. A 
non-zero can be sought randomly, but it converges faster when 
the choice is carefully tailored, as in cFL, in Figure 3.   

In this MC work for radar, sparsity is related to detection at 

a probability of false alarms Pfa. Optimal detection strategy: via 
likelihood or posterior is also studied (e.g. [18]), as drafted for 

one xn in FL in Figure 4. The value h in (1) equals   with 

variance  from the likelihood and sparsity  in the prior, but 

also e.g. √          ) in the generalized LRT (GLRT, [11]). 

Thus, both  and can be known. The optimization in (1) can 
also be greedy when split to individual posteriors (e.g. [20]).   

Accordingly, an approximation p(n | y,,) of the posterior 
p(xn | y, x-n) (assuming the rest x-n is known or zero) is studied 

to build an importance density of an individual atom n, as:   

              p(n | y, )   p(n | y, )p(n )

where p(n|y,) encourages selecting a good candidate n based 

on a detection test. An individual prior p(n ) can be any prior 
but it serves the sparsity of x here via the detection threshold h. 
In a cFL case, such a detection test can be built with the MF 
statistics from the GLRT: p(y|xn, x-n)/ p(y|0,x-n) at xMF,, n = 1, N. 

An individual n with higher probability of being a good 

candidate will be drawn more often from p(n | y, ). A large 
number L of MC realizations (or particles) is used to draw an 

element nl 
 with the weight wn

l, wn
l
  p(nl | y, ) , l = 1, L. In 

each iteration k, a single non-zero n(k) is sought, as in cFL, 
from the greedy residuals yres, k, initially y or the greedy remains 

xres, k, initially xMF. i.e. xres,1 = AH
y. The best candidate n(k) with 

the highest weight assessed by {wn
l} is selected. An estimate 

xBCS, n(k) of its amplitude xn(k) is computed from xres, k. The MC 

generation repeats from p(n | yres, k+1, )  updated with the kth 

non-zero model-based contribution: xres, k+1 = xres, k - xBCS, n(k) 

A
H
an(k) and yres, k+1 = yres, k - xBCS, n(k) an(k) where xBCS, n(k) is the kth 

estimate. This selection of significant elements continues as 
long as the detection threshold h and convergence criteria hold.  

In a realistic case, the likelihood p(y|x) as well as the prior 
p(x), can be any distribution, not restricted as in (1) to the 
Gaussian likelihood or the (Laplace) sparsity prior only. 
Accordingly, the proposed MC approach shall need no such 
restrictions. The distribution p(y|x) can represent any likelihood 
including even empirical distributions being learned from data 
y. The distribution p(x) can represent any prior information on 
x, including that of sparsity but moreover, not the sparsity 
necessarily given only by the Laplace distribution.  

C. Future Upgrades 

This MC-based Bayesian framework shall employ not only 
sparsity priors but also other prior knowledge available about 
radar signals and their acquisition. Any radar noise or clutter 
and optimal detection strategies are also to be supported.  

The freedom in estimation grid (and observation grid) is to 
be employed as good as possible in CS radar (e.g. [14]). The 
estimation grid is studied from the Bayesian perspective ([17]), 
and also within the scope of information geometry (e.g. [5]).  

Tracking is also to be embedded in this Bayesian 
framework. Sparsity and compressive acquisition are expected 
to be natural and beneficial in PF. Moreover, priors from the 
sequential estimation can improve Bayesian CS and enable its 
adaptive acquisition (e.g. [15]). Finally, nonlinear dynamics 
and non-Gaussian distribution are supported as needed for 
processing of realistic radar measurements. 

III. COMPARISON RESULTS 

Existing cFL ([19]) and its MC translation (IIB) are compared 
in the same test cases with simulated measurements. To keep 
the tests simple but explanatory enough, the measurements are 
range only in pulse radar with parameters given in TABLE I.  
In the basic radar application of the range profile, a linear 
model: y = Ax + z, contains measurements y over one single 
pulse repetition time (PRT), an unknown range profile x, 
receiver noise z, and a known sensing matrix A containing 
delayed replicas of a transmitted waveform (being a linear 
chirp of bandwidth close to the reference sampling frequency 
fs, fs = 1). In order to have an underdetermined linear system 

a) 

b) 



without compressive acquisition, M input observations remain 
while the estimation grid is up-sampled to N outputs, M < N.  

TABLE I.  MODEL PARAMETERS FOR RANGE ONLY 

Parameters Notation Value 

Number of samples in a pulse (linear chirp) Np 25 

Number of input samples (in observation grid) M 108 

Number of range cells in reference grid MR 83 

Range upsample factor FR 3 

Number of range cells (in estimation grid): FRMR+1 N 250 

The target locations are uniformly randomly chosen over all N 

possible range cells. The true value of the amplitude of every 

target in x is set to 1. The target SNR is given as an output SNR.  

  

Figure 5.  MSE of range profile x estimated by cFL ([19]) and its MC version 

(IIB) for: a) all elements and b) zeros only, at different SNR from 100 runs.  

 
Figure 6.  Profile x estimated by cFL,  its MC version and MF in one run. 

The normalized mean squared error (MSE) in the estimated 
xBCS, MSE(xBCS) = |xBCS-x|2/|x| |xBCS|, is computed for non-zero 
(targets) and zero elements in the true x, with the two cFL 
versions at different output SNR from 100 noise runs, all with 
10 targets, and shown in Figure 5. The number L of the MC 
realizations in the Monte-Carlo version (IIB) is 100.  

At lower SNRs the MSE performance is even improved for 
non-zeros in x, and slightly degraded for zeros as clear from 
Figure 5. At higher SNRs the MSE performance is comparable. 
For more clarity in SSR, a single run is also shown with both 
BCS estimates, together with MF and its detection threshold in 
the Gaussian case in Figure 6. The model-based BCS produces 
points only, and not the whole response above the threshold.  

IV. CONCLUSIONS 

Bayesian CS is improved by using Monte-Carlo methods what 
encourages work on the CS flexibility needed for non-Gaussian 
cases in a realistic radar system. This MC algorithm for 
Bayesian CS is based on the importance density that promotes 

the sparsity via a detection test. The performance of the MC 
method is comparable with the original Bayesian CS. In future 
work, other priors on radar signals and their acquisition, other 
distributions of noise or clutter, other detection strategies, grid 
matching and tracking will be embedded in this framework. 
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