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Abstract—In this paper, Finite Rate of Innovation (FRI)
is applied to time domain reflectometry and it is aimed at
significantly reducing the data acquisition requirements. The
sensitivity of FRI to quantisation noise is addressed giventhe
stringent practical constraints on the resolution of the deployed
analogue to digital converters in miniature reflectometry sensors.
Dithering with averaging is proposed to combat the effects of
quantisation noise whilst maintaining remarkably low operational
sampling rates. The substantial benefits of the adopted FRI-based
reflectometry is demonstrated in the presented simulations. The
trade-off between the resolution of the quantiser, time averaging
and sampling rate is also depicted in terms of the quality of the
signal recovery attained from the sub-Nyquist FRI samples.

I. I NTRODUCTION

Majority of the DSP in modern electronic systems is
governed by the celebrated Shannon sampling theorem. It
stipulates that the data acquisition rate should exceed the
Nyquist rate, which corresponds to the bandwidth of the
signal. In several application areas, including Time Domain
Reflectometry (TDR) [1], Nyquist rates can be prohibitively
high imposing stringent requirements on the data acquisition
and processing module(s). This results in high Size, Weight,
Power and Cost (SWPaC) solutions. In this paper, we propose
utilising Finite Rate of Innovation [2] in TDR level sensors
(otherwise known as guided wave radar level sensors) to
facilitate operating at significantly low sub-Nyquist sampling
rates. This leads to substantial SWPaC reductions without
compromising the sensor performance.
Fig. 1 depicts a TDR level sensor for determining the liquid
level in an industrial tank/container by measuring the Time
of Flight (ToF) of transmitted electromagnetic pulses. An
example of the operational specifications of a guided wave
radar level sensor is listed in Table I. With classical Nyquist
DSP, the analogue signal should be sampled at a rate of several
giga samples per second to establish the liquid level. Such rates
pose formidable design challenges given the miniature sizeof
a TDR sensor. Therefore, notably reducing the data acquisition
rate via sub-Nyquist sampling techniques is highly desirable
to produce low SWPaC guided wave radar level sensors. Since
the processed signal is composed of a sum of finite number
of pulses that can appear anywhere along the time axis, FRI
is adopted in lieu of Compressed Sensing (CS) [3]. With the
latter, achieving very high resolution along the time domain to
capture the location of the present pulses is a cumbersome task
with the discretisation typically involved in CS to tackle the
sparse problem in a finite union of subspaces. Additionally,
FRI is easily implementable and/or integrable into existing
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Fig. 1. Measured TDR signal depicting the sent pulse, its first reflection due
to impedance mismatch and the pulse reflection at the end of the probe (no
medium is present).

TDR designs, see for example Fig. 2, unlike CS and Equivalent
Time Sampling (ETS) [4]. With equivalent time sampling, a
complex bulky circuitry is necessary to generate the equivalent
sampling rates introducing hardware design challenges such
as reliable phase locked loops, etc. Besides, ETS demands
notably longer analysis time windows compared with FRI with
implications on the sensor response time and the incurred
latency.
In FRI, the sampling rate is typically increased to well above
twice the signal information rate (theoretical minimum rate)
and denoising algorithms are deployed to combat the effectsof
any present noise [2], [5], [6]. Such remedies degrade the FRI
gains in terms of the furnished savings on the data acquisition
compared with classical Nyquist DSP and limits its practical
applications. In the considered TDR sensor and due to practical
SWPaC constraints, the resolution of the on-board Analogue
to Digital Converter (ADC) is limited, e.g. to a maximum
resolution of 8 bits. This introduces quantisation noise that the
subsequent processing, such as signal reconstruction fromthe
captured sub-Nyquist samples, is ought to handle or tolerate
[7]. Conventionally, either the sampling rate is increasedand/or
an ADC with higher resolution (whenever possible) is used to
deliver the sought sensing performance.
In this paper, we show that FRI is very sensitive to the presence
of quantisation noise even with various denoising algorithms
such as Cadzow and total least squares; or a combination
of both (see [2], [5], [6]). Consequently, sampling rates re-
markably higher than the set theoretical minimum in FRI
[2] are required to enable reliable FRI-based TDR. Here, we



TABLE I. T ECHNICAL SPECIFICATIONS OF AN OPERATIONALTDR
SENSOR.

Requirement Value
Measuring Range 5 cm . . . 10 m

Inaccuracy < 5 mm
Resolution < 0.5 mm

Response Time < 100 ms

propose introducing dithering to the signal prior to sampling
followed by an averaging to suppress/eliminate the effectsof
the present quantisation noise without significantly increasing
the operational sub-Nyquist sampling rates and/or resorting to
a higher resolution ADC. The trade-off between the sampling
rate, ADC resolution (i.e. level of present quantisation noise),
averaging and accuracy of ToF measurements are evaluated.
In [8] various FRI sampling kernels are examined with the
presence of additive noise. Unlike the latter, the aim here is
to combat the quantisation noise by dithering and ensemble
averaging.

II. TDR AND PROBLEM FORMULATION

A. TDR and Adopted Signal Model

A TDR measurement system locates the discontinuities
of the waveguide impedance along the propagation path of
an electromagnetic wave. It exploits the fact that at every
discontinuity a wave reflection occurs and the amount of the
reflected energy depends on the impedance change described
by the reflection factor:

R =
Z0 − Z1

Z0 + Z1

. (1)

when the waves travel from a space with impedanceZ0 into
a space with impedanceZ1.
A TDR sensor sends a pulsep(t) and analyses its reflections
to establish the locations of the present discontinuities,e.g.
a medium-change, by determining their associated ToF. The
measured TDR signal can be expressed by:

x(t) =

K−1
∑

i=0

aip(t− ti) = g(t) ⋆ p(t) (2)

whereK is the number of reflected pulses centred at the delay
time instants{ti}, |ai| ≤ 1, δ(t) is the Dirac delta and

g(t) =

K−1
∑

i=0

aiδ(t− ti). (3)

Thus the processed signalx(t) has 2K degrees of freedom
and FRI-sampling with the annihilating filter can be applied.
Since this work is motivated by suppressing/eliminating the
impact of the quantisation noise on FRI-based TDR, a number
of simplification to/in the model in (2) are made. The pulses
in x(t) are assumed to not overlap and a minimum distance
between any two adjacent pulses is maintained as in [5] and
[8]. Here the latter is set to10σ where σ is the standard
deviation of the Gaussian shaped pulsep(t). Electromagnetic
interference (EMI) and analogue noise are discarded. Whereas,
the magnitude attenuation factorai in (2) can vary for distinct
time delays{ti} unlike in [5] and [8]. In the considered
TDR application, reflections with magnitudes in the range of

|ai| ∈ {0.05 . . .1} are of an interest, leading to a magnitudes
dynamic range of 26 dB.

B. Problem Formulation and Proposed Approach

Whilst FRI offers a means to remarkably reduce the
prohibitively high data acquisition rates of TDR sensors that
abide with Shannon sampling theorem, it is shown to be very
sensitive to the presence of quantisation noise. It is particularly
severe given the low resolution ADC(s) typically used in TDR
sensors due to size and power limitations. In lieu of increasing
the averaging sampling rate to combat the effects of noise,
dithering with averaging is proposed to facilitate effective FRI-
based reflectometry. In addition to the sampling rate and ADC
resolution, the level of introduced dithering and time averaging
affect the quality of attained sensing results. Accordingly, the
trade-off between these parameters is examined using extensive
simulations. It is noted that reliably estimating the pulse
location(s) in a TDR sensor is crucial to fulfil the accuracy
requirement of the system. For example, in Table I the specified
maximum relative ToF measurement error between two pulses
imposes a pulse-location estimation error of approximately less
than terror = s/c = 33 ps. The proposed FRI-based TDR with
dithering and averaging is shown to substantially improve the
pursued estimation accuracy.

III. FRI- BASED REFLECTOMETRY

A. FRI Sampling

The basic principle of FRI is to translate the highly non-
linear dependency betweenti andx(t) in (3) in a linear system.
This is done by obtaining the Fourier transform of the samples
of x(t). Applying methods from spectral estimation the signal
x(t) can be reconstructed from the few collected sub-Nyquist
samples{x(nTs), n = 1 . . .N}. One well investigated method
is the annihilating filter [2]. Prior to sampling at remarkably
low rates compared to the Nyquist counterpart, a sampling
kernels∗(−t) is used to filter the analogue signal (see Fig. 2).
The Sum of Sincs (SoS) kernel is adopted in the sequel due
to its suitability for data contaminated with additive noise [8]
and its compact support in time domain allowing to sample
finite as well as infinite length FRI signals [9]. SoS kernel can
be described in the frequency domain by:

G(ω) =
τ√
2π

∑

k∈K

bk sinc

(

ω

2π/τ
− k

)

(4)

where bk 6= 0 are the coefficients andτ is the period of
the present pulses. For the signal in (2) with2K degrees of
freedom, FRI enables the full recovery ofx(t) as long as
the number of collected samplesN exceeds the signal rate
of innovation, i.e.N ≥ 2K + 1 albeit Nyquist, and2K is
commonly referred to as the critical sampling or minimal rate.
The sampling frequency is given byN/τ and the processed
signal is typically sampled at rates exceeding that of the
critical sampling such thatN = 2βK + 1 andβ > 1 is the
oversampling factor.
In the presence of noise, various denoising algorithms, e.g.
Cadzow, are used with FRI. However, such denoising al-
gorithms are shown to be ineffective for achieving notable
improvements in the quality of the signal reconstruction inthe
presence of quantisation noise; a noise exasperated by practical



limitations on the resolution of the used ADC. Alternatively,
the sampling rate can be substantially increased to well above
the critical minimum to enhance the quality of results; an
option that undermines the benefits of FRI in terms of easing
data acquisition requirements. A top-level block diagram of
the proposed TDR system is shown in Fig. 2. After triggering
the pulse generator, the Gaussian shaped pulse propagates
through the electronics towards the probe. Both sent pulsesand
their reflections are guided to the sampling kernel, and then
dithering is added to the signal prior to the low rate quantiser.
This produces a discrete sequence with a sampling period
of Ts. Dithering coupled with averaging prior to the signal
reconstruction is shown to significantly improve the accuracy
of estimating the TDR pulse locations circumventing the need
to choose high FRI oversampling factor.
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Fig. 2. TDR with FRI;s∗(−t) is the sampling kernel such as sums of sincs
filter.

B. Dithering with Averaging

Ensemble averaging can be modelled like an oversampling
process. The quantisation noise energyE[·] is [10]

E[e2noise] =
Q2

12L
, (5)

whereL is the oversampling factor andQ is the quantisation
step. This oversampling factorL must not be confused withβ
pertaining to the FRI sampling. It can be derived that the gain
G of the averaging process in bits can be expressed with:

G = 1/2 · log
2
L. (6)

However, this only holds for linear systems. As quantisation
is a highly non-linear process information is lost. This is
because for each quantisation level all corresponding amplitude
levels are subsumed to a single value. Therefore, averagingan
already quantised data will not necessary lead to the average
of the data. To overcome this problem, a linearisation of the
system is applied using additional dithering noise [11]. When
for example a uniformly distributed noise with an amplitude
range of±Q/2 is added prior to quantisation, the probability
of an amplitude level being quantised to the next higher or
lower quantisation level depends linearly on the level, i.e. on
average the system is linear again. Averaging the dithered and
quantised levels therefore significantly reduces the noiselevel,
although some dithering noise was added.
In the TDR application, each contribution to the ensemble
averaging is taken after a pulse is transmitted. Assuming a total
signal length or pulses period ofτ = 500 ns the overall signal
acquisition time for the averaging process with 250 averages
is 125µs. As the measurement condition can be considered
to be stationary over a time of several milliseconds, the
resulting time delay can be tolerated. Additionally, the sensor
requirement for the maximum permitted latency, e.g. set in
Table I at100ms, clearly indicates that there is sufficient time

to perform the computational tasks involved (latency refers to
the time between a change in the measurement condition and
the response of the TDR sensor to the aforementioned change).

IV. SIMULATIONS

In this section, extensive Monte Carlo simulations are con-
ducted to quantify the advantages of the proposed approach,
i.e. dithering with averaging, in FRI-based reflectometry.Here,
we adopt the model described in (2) where Gaussian shaped
pulses withσ = 200 ps are used by the TDR sensor as in
typical practical scenarios. Five sent/reflected pulses,K = 5,
are assumed to be present and the period of the observed
signal is τ = 50 ns. This leads to a minimum permissible
sampling rate of1/Ts = N/τ = (2βK + 1)/τ = 220MHz
with β = 1 as per the signal rate of innovation; it is remarkably
lower than the Nyquist sampling counterpart. The sums-of-
sincs filter is deployed as the sampling kernel with a bandwidth
of B = 1/Ts and the recovery is carried out using the Cadzow
algorithm. In a practical TDR system, the pulse absolute
amplitude value can notably vary, e.g. in Table I the processed
signal has a dynamic range of 26 dB. Accordingly, we assess
the impact of treating pulses with varying amplitudes on the
accuracy of the attained results compared with the scenario
where all the pulses take amplitudes of±1. In all the presented
plots, 2,000 independent experiments are averaged to obtain
the displayed Root Mean Squared (RMS) and absolute max-
imum errors of estimating the exact locations of the present
pulses. The pulse locations are chosen arbitrarily in each of
the aforementioned experiments; however the restriction that
the distance between any two adjacent pulses is never less than
10σ is maintained. Dither that is uniformly distributed in the
region of±Q/2 is introduced (whenever applicable) and it is
accompanied by averaging.
In Fig. 3 and Fig. 4, we show the maximum and RMS

errors of the FRI pulse locations estimation for a varying
ADC resolution with and without dithering plus averaging.
The oversampling ratio is set atβ = 2, i.e. the sampling
rate is440MHz, and 250 averages are made, i.e. the signal
aquisition time (latency) is12.5µs ≪ 100ms. Whilst in
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Fig. 3. Maximum and RMS errors of the FRI pulse locations estimation for
a varying ADC resolution; pulses amplitudes take a value of±1.



Fig. 3 the pulses take an amplitude of±1, in Fig. 4 we have
|ai| ∈ {0.05 . . .1}. It is clear from both figures, the proposed
FRI-based TDR with dithering plus averaging leads to notable
reductions in the delay estimation errors. Besides, increasing
the ADC resolution without dithering plus averaging does
not necessarily lead to lower maximum estimation accuracy
due to the random nature of the quantisation noise. Whereas,
introducing dithering plus averaging suppresses such erratic
behaviour of the obtained error. It is noted here that in practice
restraining the maximum absolute error is crucial to ensuring
robust TDR sensor operation and fulfil the pre-set system
specifications. As seen in Fig. 3 and Fig. 4, the achieved
gain from using dithering plus 250 averages is approximately
3 bits, which is consistent with (6). For example, in Fig. 3 FRI
without dithering requires12 bits to achieve the RMS error
of FRI with dithering of a resolution of8 bits. Additionally,
Fig. 3 and Fig. 4 depicts that applying FRI to TDR for pulses
with a relatively large dynamic leads to substantially larger
estimation errors compared to when the present pulses have
equal magnitudes, e.g.ai ∈ {−1,+1}.
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Fig. 4. Maximum and RMS errors of the FRI pulse locations estimation for
a varying ADC resolution; pulses amplitudes have a dynamic range of 26 dB.

In Fig. 5, the effects of FRI oversampling ratios and number
of averages on the accuracy are examined. The five present
pulses amplitudes vary with a dynamic range of 26 dB and
an ADC resolution of 6 bits is assumed. It can be noticed
from the figure that the estimation accuracy improves as the
oversampling ratio increases. The slope of this improvement
is significant till β = 8 and then the benefits of increasing
the sampling rate becomes marginal. In terms of the number
of averaged signal acquisitions, it is clear from Fig. 5 that
increasing the number of averages leads to better estimates
with lower RMS and maximum errors. It is noted here that
in practice a trade-off is present between the ADC operational
sampling rates and the achieved ENOB. This implies that high
resolutions at high sampling rates can be infeasible.

V. CONCLUSION

Whilst FRI technique enables TDR with substantially low
sub-Nyquist rates, it is very sensitive to the presence of
quantisation noise which is severe in TDR systems due to
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Fig. 5. Time resolution as a function of the oversampling factor and the
number of averaged sequences (the absolute time mismatch isdisplayed using
solid lines, while dashed lines are used to indicate the RMSE-values).

practical hardware limitations. Introducing dithering prior to
sampling and then averaging directly after sampling leads to
significant performance improvements of the FRI approach.
However, such improvements are not sufficient to meet strin-
gent sensing requirements in practical reflectometry sensors,
e.g. a maximum error of33 ps. Given FRI amenability to im-
plementation in hardware and ease of integration into existing
sensor architectures, this paper serves as an impetus to further
research into FRI-based TDR, especially in terms of further
reductions on the maximum ToF estimation error via novel
reconstruction methods.
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