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Abstract—We address a new technique for feature-enhanced 
radar imaging with compressed/fractional SAR data that unifies 
the descriptive experiment design regularization (DEDR) 
framework with the total variation (TV) image enhancement 
paradigm and the sparsity preserving regularizing projections 
onto convex solution sets (POCS). The new framework 
incorporates the 1  metric structured TV regularization  into the 

2  metric structured DEDR data agreement objective function 

and solves the overall reconstructive imaging inverse problem 
employing the POCD-DEDR-TV-restructured MVDR strategy.   
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I. INTRODUCTION   

In low cost remote sensing (RS) missions with small 
airborne or unmanned flying vehicle platforms, low resolution 
sensors with simple and cheap hardware such as unfocused 
fractional SAR systems with onboard processors are attractive 
[1], [2]. However, the fractional synthesis mode inevitably 
sacrifices spatial resolution and usually suffers from harsh 
operational scenario uncertainties attributed to random signal 
perturbations in a turbulent atmosphere, imperfect system 
calibration, multiplicative speckle noise, and uncontrolled 
carrier trajectory deviations. All those make impossible wide 
focus aperture synthesis. That is why, all airborne fractional 
SAR systems employ the unfocused matched spatial filtering 
(MSF) method for image formation, sometimes referred to as a 
quick-look or compressed sensing mode [1–3]. The challenging 
problem is to post-process such low resolution speckle-
corrupted MSF imagery aimed at accurate recovery of the 
scene power reflectivity map. The latter represents an estimate 
of the spatial spectrum pattern (SSP) of the backscattered field. 
Representing a spatial map of the RS scene power reflectivity 
(i.e., the second-order statistics of the random backscattered 
field), the SSP possesses the local spatial sparsity property for 
typical piecewise smooth scenes [3]. The problem is to 
reconstruct such SSP with considerable features enhancement, 
i.e., high estimation accuracy balanced over noise suppression.  

In this study, we consider the inverse problem of feature-
enhanced SSP reconstruction from the fractional/compressed 
SAR imagery stated and treated in a framework of the varia-

tional analysis (VA) inspired 1 metric structured 
regularization. The challenging proposition is to solve such the 
inverse problem with considerable resolution enhancement 
over noise suppression gains performed in a speeded-up 
iterative fashion. First, we resume the descriptive experiment 
design regularization (DEDR) framework [4,5] for solving the 
nonlinear uncertain inverse problem at hand based on the 
nonparametric 2 -type squared error norm minimization 
strategy robust against the operational uncertainties in the sense 
of the worst case statistical performance optimization [4]. Next, 
the DEDR framework is expanded by aggregating it with the 
SSP total variation (TV) minimization approach that exploits 
structural information on the desired image spatial gradient 
magnitude map sparsity over the RS scene [3], [6] and 
incorporates also the sparsity preserving projections onto 
convex sets (POCS) in the solution space with the user-
specified/adaptive adjustments of the DEDR-, the TV- and the 
POCS-level degrees of freedom.  Our method   incorporates the 

1  metric structured regularizing POCS-TV into the 2  metric 
structured DEDR data agreement objective function and solves 
the overall nonlinear radar image reconstruction inverse 
problem employing the POCS-DEDR-TV aggregated 2 1   
restructured MVDR strategy [4,5]. We corroborate the 
effectiveness of our new POCS-DEDR-TV technique in the 
resolution enhancement over noise suppression gains with the 
guaranteed RS image gradient sparsity preservation via its 
comparison with other most prominent competing feature-
enhanced radar imaging techniques in the literature [1–6].    

II. INVERSE PROBLEM FORMALISM 

The considered here SAR imaging inverse problem model 
is structurally similar to the previous studies [4–6]. Thus, in 
this section, we provide the problem background following 
the DEDR formalism [4,5] for convenience to the reader.  

Following [5], consider the vector-form coherent equation 
of observation that relates the pixel-framed random scene 
reflectivity v with the fractional SAR trajectory data signal       

u = Sv + n = Sv + SΔ v  + n                       (1) 



where n is the observation noise vector and SS S Δ   is the 

MK (M < K for compressed sensing scenarios) matrix-form 
approximation of the integral perturbed signal formation 
operator (SFO), in which the regular component S is specified 
by the employed modulation and synthesis mode [4,5]. In (1), 
v, n, u are treated as Gaussian zero-mean vectors composed of 

the random entries 1{ }K
k kv  , 1{ } 

M
m mn  and 1{ }M

m mu  , respectively 

[4,5]. These vectors are characterized by the correlation 
matrices, ( ) diag( ) vR D b b , the diagonal matrix with the 

vector-form SSP b at its principal diagonal, 0NnR I  and 

0 ,N  u vR SR S I  correspondingly, where the averaging 

<·> is performed over the randomness of perturbations SΔ  of 

the regular SFO S in (1), superscript +  stands for Hermitian 

conjugate, and 0N
 
is the white observation noise power. 

Vector b represents a lexicographically ordered by multi index 
k = (kx, ky) vector-form approximation of the SSP map B = 
{b(kx, kx)} over the KyKx pixel-framed 2-D scene {kx = 1,…, 
Kx; ky = 1,…, Ky; k = 1,…, K = KxKy} [1,4]. 

The feature-enhanced RS imaging problem at hand is to 
develop the framework (in this study, the unified POCS-
DEDR-TV referred to as the 2 1   restructured robust MVDR 
method) and the related technique(s) for high-resolution 
estimation (feature-enhanced reconstruction) of the SSP  

POCS-DEDR-TV 0
ˆ { | ; ( ) }est N     ub b u Sv n R SD b S I     (2) 

from the available recordings (1) of the complex (coherent) 
trajectory data u degraded by the composite noise 
(multiplicative SΔ  and additive n) with the SFO perturbation 

statistics  vSR S 
 
unknown to the observer. 

To specify the piecewise SSP gradient map smoothness 
properties peculiar to the majority of the real-world RS scenes 
[3,6], we propose the variational analysis (VA) inspired 
metrics structure in the image space via inducing the following 
balanced anisotropic image norm and its gradient flow norm  
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Here, the term with the weight factor m
2

specifies the 

equibalanced weighted image and image gradient 2 -type 

norm. The second term with the weight factor m
1  

induces the 

1  structured image gradient norm component computed via 

the separable over x and y axes discrete-form finite differences 

1
|| || b 

2 2 1/2(( ( , )) ( ( , ) )x x y y x yb k k b k k   . This 1  metric 

conserves the image gradient piecewise sparseness properties 
[3,6]. Thus, the (3) induces the composite 2 1   structured 

image norm, in which the nonnegative user specified factors 
m

2
and m

1
 control the balance between the two metrics 

measures. In this study, we use the equibalanced model m
2

= 

m
1
= 1.  Nevertheless, other specifications are admissible [6]. 

III. DEDR RESTRUCTURED ROBUST MVDR TECHNIQUE 

The high-resolution adaptive estimation of the SSP via the 
classical adaptive minimum variance distortionless response 
(MVDR) method [1] results in the solution-dependent strategy 

1

1ˆ
( )k

k k

b  
us R b s

; k = 1,…, K                  (4) 

optimal (in the MVDR sense) for the theoretical model-
dependent (b-dependent) covariance matrix inverse 1 ( )

uR b  

where k
s  defines the so-called kth steering vector composed 

of the corresponding kth row (k = 1,…, K) of the adjoint 
regular SFO matrix S+ [4]. In the real-world RS imaging 
scenarios, the unknown exact model of the covariance matrix 

( )uR b  is substituted by its sample maximum likelihood (ML) 

estimate [1] ˆ uY R ( ) ( )1
(1 / )

J

j jj
J 


  u u that yields the 

conventional MVDR estimation algorithm [1,4] 

1

1ˆ
k

k k

b  
s Y s

; k = 1,…, K                      (5)    

feasible for the full rank Y only. From simple algebra, it is 
easy to corroborate that the theoretical model-based strategy 
(4) is algorithmically equivalent to the solution (with respect 
to the SSP vector b) of the nonlinear equation  

(1) (1) (1) (1)
diag diag diag{ ( )} { } { ( ) ( ) ( )} u uD b W R W W b R b W b  (6) 

with the solution operator (SO of the 1st kind) 

(1) (1) 1( ) ( ) ( )   uW W b D b S R b                      (7) 

where as previously, ( ) diag( ) D D b b  is the diagonal 

matrix composed of the SSP vector b at its principal diagonal. 
Referring to [4], the SO of the 1st kind (7) has its 
algorithmically equivalent counterpart (SO of the 2nd kind) 

(2) (2) 1 1 1 1( ) ( ( ))       n nW W b S R S D b S R .        (8) 

Substituting (1)W

 

in (6) by (2)W  and the theoretical 

covariance matrix uR  by its ML sample estimate ˆ uY R  

yields the DEDR-restructured MVDR strategy  

(2) (2)
diag diag

ˆ ˆ ˆ ˆsolution to the Eq. { ( )} { ( ) ( )}   b D b W b YW b

 



diag
ˆ ˆ{ ( ) ( )} A b QA b                               (9) 

with the solution independent sufficient statistics matrix 
Q S YS  and the solution-dependent matrix-form 

reconstructive operator  

1
0

ˆ ˆ ˆ( ) ( ( ) ) ( )N   A A b D b Ψ I D b .              (10) 

In (9), operator {}diag returns the vector of the principal 
diagonal of the embraced matrix, and in (10), Ψ S S  
represents the matrix-form point spread function (PSF) of the 
so-called matched spatial filtering (MSF) linear low-resolution 
image formation system [1,4]. Note that matrix A does not 

involve the inversion of  ˆ( )D b , hence, the constructed DEDR-

restructured MVDR strategy (9) results in the desired sparsity 
preserving DEDR technique that admits zero entries in  b.   

The DEDR framework [4] suggests the worst case 
statistical performances optimization approach to the problem 
at hand (2) with model uncertainties regarding the statistics of 
the SFO perturbations that yields the robust SO   

(2) 1ˆ ˆ ˆ ˆ( ) ( | ) ( ( ) ) ( )N N  
    W W b A b S D b Ψ I D b S   (11) 

in which 0N N   is the observation noise power N0  

augmented by factor   0 adjusted to the regular SFO 
Loewner ordering factor and the statistical uncertainty bound 
for the SFO perturbations (see [4] for details). Hence, the 
robust modification of the DEDR is now constructed simply 
by replacing in (9), (10) N0 by the composite (loaded) 

0N N   . In practical estimation scenarios, the diagonal 

loading factor   can be evaluated empirically from the 

speckle-corrupted low-resolution MSF image following one of 
the local statistics methods exemplified in [4,6].   

Next, we adapt the robust sparsity preserving DEDR (9), 
(10) to the considered here single look fractional SAR mode  
(J = 1) substituting Y by uu and defining the complex MSF 
imaging system output   

q S u                                     (12) 

in which case, the robust sparsity preserving DEDR strategy 
(9) yields the solution in the form of the elementwise square 
detected (SQ-DET{}) output of the solution-dependent 

reconstructive operator ˆ( )A b
 
applied to  q   

ˆ ˆ ˆsolution to the Eq. SQ-DET{ ( ) }   b b A b q
 
 

     diag
ˆ ˆ{ ( ) ( )}  A b qq A b .                          (13) 

The next stage of our design consists in incorporating the 
convergence guaranteed POCS operator   into the solver for 

(13) that yields the resulting POCS-regularized DEDR-TV 
(POCS-DEDR-TV) technique in the form of a solution to the 
nonlinear equation  

diag
ˆ ˆ ˆ{ ( ) ( )} b A b qq A b                      (14) 

with ˆ( )A A b  specified by (10) and the composite POCS 

operator 2 1  . The action of such 
 
is twofold. First, 

operator 1  transforms (14) into the corresponding implicit 

contractive mapping iterative scheme that preserves the 
imposed metric structure (3) in the solution space ( )K  [6]. 

Second, 2  acts as a hard thresholding operator that at each 

iteration i = 1, … clips off all entries of [ ]
ˆ

ib
 
lower than the 

user prescribed positive sparsity preserving tolerance 
threshold. Hence, such 2 1   serves as

 
a convergence 

guaranteed composite POCS operator [5,6]. The iterative 
process is initialized with the standard low-resolution MSF 

(zero-step iteration) image [0] diag
ˆ { }b qq  and is terminated 

at [ ]
ˆ

Ib  for which the conventional 0.1% 2  squared norm 

error tolerance convergence level is attained at some i = I.
 
 

Last, to construct the speeded up computational structure 
of the iterative-form version of the POCS-DEDR-TV 
technique (14) we make the use of the operator feedback loop 
structure of Fig. 1 that yields the composite transfer matrix  

 

1
1 2 1( )k  A A A I A  .                     (15) 

With the specifications, k = N , 1 [ ]
ˆ( )iA D b  and A2 = Ψ , 

this scheme is exactly suited to performs the computing 
required by the solver (13) at the coherent data processing 
level. The computational structure of the resulting iterative-
form POCS-DEDR-TV technique (14) is presented in Fig. 2.   

IV. SIMULATIONS AND DISCUSSIONS 

Figs. 3, 4 report some qualitative results of enhancement of 
a fractional SAR image applying different DEDR-related 
techniques. The test 512512 pixel-format high resolution 
scene of Fig. 3 borrowed from the real-world SAR imagery [7] 
relates to the hypothetical full focused SAR imaging mode. 
The low resolution speckle corrupted radar image of the same 
scene presented in Fig. 4(a) corresponds to the single look 
fractional SAR mode (quick look fractional SAR modality) for  

 

Figure 1. Feedback loop structure of operator A defined by (15).



 

Figure 2. Double feedback loop-type implicit iterative contractive mapping 
algorithmic structure of the sparsity preserving POCS-DEDR-TV technique 

(14). Block labeled by z–1 defines the one iteration step delay operator.  

 

Figure 3. Test 512512-pixel scene (not observable with the fractional SAR 
system under consideration) borrowed from the real-world SAR imagery [7]). 

the typical operational scenario specifications, the same as in 
the comparative previous studies [5,6] as specified in the 
Figure captions. Figs. 4(b) thru Fig. 4(f) report the feature-
enhanced radar imaging results obtained with different 
compared DEDR-related techniques specified in the Figure 
captions. These results corroborate that the best perceptual 
fractional SAR image enhancement performances as well as 
quantitative enhancement measures and convergence rates 
(compared to those reported in the related study [6] for the 
most prominent competing methods in the literature) are 
attained with the developed POCS-DEDR-TV technique (14).  
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. 4. Simulation results of the fractional SAR imaging experiment:            
(a) 512512 pixel-framed low resolution speckle corrupted MSF image of the 
scene of Fig.3 formed with a simulated fractional SAR system (modeled 
fractional SAR system parameters: triangular range point spread function 
(PSF) width (at ½ of the peak value) r  = 15 pixels; Gaussian bell azimuth 
PSF width (at ½ of the peak value) a  = 30 pixels; worst case single-look 
scenario with fully developed speckle, SNR = 0 dB); (b) image despeckled 
applying the DEDR-related local statistics-based anisotropic diffusion 
technique [5]; (c) image enhanced applying the VA-free DEDR method [4] 
(convergence at I = 20 iterations); (d) image enhanced with the TV-inspired 

1  
only structured DEDR method [5] (convergence at I = 15 iterations);      

(e) image enhanced using the most competing 2 1 
 
structured dynamic 

DEDR-VA technique [6] that does not employ the POCS-DEDR-TV-
restructured MVDR strategy (convergence at I = 9 iterations); (f) image 
enhanced applying the developed here POCS-DEDR-TV-restructured MVDR 

method (14) with the zero threshold level in the POCS operator 2   , a 

projector onto the positive convex cone set (convergence at I = 4 iterations).  


