

Autofocus for CS Based ISAR Imaging in the presence of Gapped Data

E. Giusti, S. Tomei, A. Bacci, M. Martorella, F. Berizzi

- CS applicability to ISAR imaging
- Signal model
- CS for gapped data in the slow time domain
- Autofocusing algorithms
 - Conventional ICBA
 - Optimal approach for gapped data
 - Multi-window ICBA
- Simulation results
- Conclusions

ISAR image can be considered as **intrinsically sparse** since the number of dominant scatterers is much smaller than the number of pixels in the image

Suitable for Compressive Sensing application

Applications:

- ISAR image reconstruction with data sampling rate lower than the Nyquist bound
- Resolution enhancement both in the delay-time and Doppler domain
- ISAR imaging with incomplete data in the slow-time/ Doppler domain

Common assumption: **motion compensated** data

CS-ISAR: Signal Model

Output of the matched filter:

$$S(m,n) = CW(m,n) \sum_{k=1}^{K} \sigma_{k} e^{-j2\pi \frac{mq_{k}}{Q}} e^{-j2\pi \frac{nd_{k}}{D}} e^{-j\frac{4\pi m\Delta f}{c}R_{0}(n)}$$

$$m = 0,1,...,N_{f} - 1$$

$$n = 0,1,...,N_{st} - 1$$

$$d = 0,1,...,D - 1$$

$$q = 0,1,...,D - 1$$

W(m,n) Discrete frequency-slow time domain in which the signal is defined

Well performed motion compensation
$$\rightarrow S_c(m,n) = CW(m,n) \sum_{k=1}^K \sigma_k e^{-j2\pi \frac{mq_k}{Q}} e^{-j2\pi \frac{nd_k}{D}}$$

$$\mathbf{S}_c = \mathbf{\Psi}_D \mathbf{I} \mathbf{\Psi}_R^T$$

S_c Non sparse data (complete received signal <u>after motion compensation</u>)

I ISAR image, which is assumed intrinsically sparse

$$\Psi_D$$
 Fourier matrix Ψ_R Fourier matrix

Matrix bases that define the space, i.e. the *image domain*, in which the available data is sparse

CS-ISAR: Gapped data in the slow-time domain

Multitracking radar systems that collect data of different targets in non adjacent time intervals

 $\Psi_{\scriptscriptstyle D}$ is zero where the signal gaps are ${oldsymbol >} \Theta_{\scriptscriptstyle D}$

$$\mathbf{S}_{cg} = \mathbf{\Theta}_D \mathbf{I} \mathbf{\Psi}_R^T$$

- The effectiveness of conventional reconstruction algorithms is reduced because of the lack of information in the data
- CS is an effective alternative for gapped data reconstruction

$$\min_{\mathbf{I}} \|\mathbf{I}\|_{0}$$
 s.t. $\mathbf{S}_{cg} = \mathbf{\Theta}_{D} \mathbf{I} \mathbf{\Psi}_{R}^{\mathrm{T}}$

CS-ISAR: Motion compensation

Image Contrast Based Autofocusing (ICBA) [1]

Iterative algorithm based on the maximization of the image contrast for the estimation of $\hat{R}_0(t)$

The use of 2D-FFT in case of gapped data leads to distorted ISAR images

CS-ICBA

The optimum solution consists of the

Computationally expensive leading to high processing time.

CS-ISAR: Motion compensation for gapped data

<u>ICBA</u>

- Conventional FFT based ICBA applied to the whole gapped data
- The image reconstruction is performed via CS

Faster than the CS-ICBA

CS-ISAR: Motion compensation for gapped data

Multi-window ICBA

- Conventional FFT reconstruction applied to each window of the gapped data (*)
- The estimation of $\hat{R}_{0opt}(t)$ is performed considering the product of the image contrast values of each slow time window

CS-ISAR: Simulation Results

National Lab

CS-ISAR: Simulation Results

ICBA: Simulation Results

Conclusions

- CS as a powerful tool for ISAR applications:
 - imaging from gapped data,
 - Image reconstruction in data with data sampling rate lower than the Nyquist bound,
 - > enhanced resolution in ISAR imaging
- Autofocusing as crucial step to apply CS
- > 2D-FFT introduces distortion in the image reconstruction from gapped data so conventional ICBA could be not effective due to the presence of local maxima in the cost function
- ➤ Optimal approach: ICBA based on CS image reconstruction at each iteration → too high computational time
- > Multi-window ICBA based on the product of image contrast evaluated on each window
 - No distortion introduced by the 2D-FFT on the image reconstruction from each window, which is a complete data
 - No local maxima in the cost function

