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Abstract—In Radar applications it is important to generate a
sinus signal with low phase distortion. High precision oscillators
have a low level of efficiency, they are expensive and also require
an analog power amplifier with linear characteristic. The sinus
generation with pulse width modulation (PWM) is effective and
economical, but adds additional noise to the signal.

When the transmission channel is known, then the signal
generation can be optimized to receive a sinus wave with lower
noise. We introduce here a new algorithm to determine the
coefficients for the PWM and compare the performance of signal
generation with linearization method.

Index Terms—Compressed Sensing, BMP, PWM, Sinus, Bi-
nary, Chirp, Optimization

I. INTRODUCTION

Sinus generation is an important topic in signal generation
for different kinds of applications. One important application is
Radar. In Radar a short pulse of a sinus wave is transmitted and
reflected at the objects. The reflection is received by the Radar
device and the distance can be calculated from the time delay
of arrival and the velocity by estimating the frequency shift
of the echo to the transmitted signal. This is mathematicaly
done by correlation with a reference sinus signal. The signal-
to-noise-ratio (SNR) for the parameter estimation increases
when the received echo has nearly a perfect sinus form.

For low frequency radar, like ultrasonic distance mesaure-
ment, to measure distances the signal is often generated by
the microcontroller. The efficiency of PWM is better than an
oscillator and a digital switch is needed as power amplifier
and a low pass filter. This system is effective and economical.
Furtermore, different signals can be generated, such as chirp
signals or constant frequency signals.

The sampling frequency of the PWM generator is usually
higher, than the sampling rate of the analog-to-digital converter
(ADC). For one signal block the PWM vector consists of
N elements and the measurement vector from the ADC of
M . Consequently, N > M and the unknown PWM vector
is underdetermined. A common way to generate the PWM
values is to generate the reference signal in the PWM domain
and take a threshold on it (e.g. the sign function for bias free
sinus).

For precise distance estimation, the phase of the received
echo has also to be analyzed and the transmission channel.
With the knowledge of the channel, the transmitted signal
can be calculated from the reference signal and the channel

to receive the expected signal [1]. But the result is a signal
with real values and high amplitudes. An optimization for
binary values result in a combinatorial problem, which is NP-
complete. For short vectors, the calculation can be done in
short time, but for large vectors, the computational complexity
increases exponentially. Therefore, an approximation of the
problem by the `1−norm reduces the computational complex-
ity to polynomial order.

The rest of the paper is organized as follows: Section II
presents the introduction of Compressed Sensing. In Section
III we define the binary optimization problem for PWM gener-
ation. In Section IV we introduce a novel algorithm for binary
optimization. Numerical simulation results and comparison
wtih other optimization algorithms are discussed in Section
V. The conlusions are discussed in Section VI.

II. COMPRESSED SENSING

Important research to estimate frequencies in underdeter-
mined systems was independently done by Candes [2] and
Donoho [3] in 2006. The problem was to solve the equation
y = Ax, where the unknown vector x ∈ RN have more
elements than the measured values y ∈ RM , N > M and the
unknown vector is sparse. A sparse vector has only ‖x‖`0 = K
, whereby K < M , elements that are unequal zero. Then the
optimization problem is

arg min
x
‖x‖`0 , s.t.y = Ax (1)

To approximate problem (1) for sparse vector x using con-
straint linear optimization can be represented as [3][2]:

arg min
x
‖x‖`1 , s.t.y = Ax (2)

Then a correct solution can be calculated with very high
probability by solving the approximation (2).

Instead of performing a combinatorial optimization (1)
which is NP-hard, a linear optimization problem (2) with
polynomial order of complexity is calculated.

III. PROBLEM FORMULATION

To generate a sinus signal, a bipolar signal with x∗ ∈
{−1, 1} generates first a rectangle signal form. The rectangle
in the time domain is a sin x

x in the frequency domain. In
the second step the rectangle signal form is filtered by a



band pass filter. In our environment the bandpass filter is
a piezo electrical ultrasonic transmitter. The microcontroller
generates a PWM with binary unipolar values of {0, 1} which
transformed to bipolar values {−1, 1} by inverting the signal.

The reference signal yRef ∈ RM is usually a sinus or a
chirp signal. So the mathematical description of the signal
generation is

yRef = ΦΨx∗

where x∗ ∈ PN , P = {−1, 1} is the bipolar signal. The vector
elements can be transformed to a binary set B = {0, 1} for
the PWM generation vector by

x = 2x∗ − 1N

Then with binary signal generation it follows

2yRef − 1N = ΦΨx

y = ΦΨx

with the dimensions of the vector x ∈ BN and the measure-
ment vector y ∈ RM with the sensing or selection matrix

Φ ∈ RM×N

and the channel matrix

Ψ ∈ RN×N

The measurement vector is rewritten as

y = 2yRef − 1M

and the compression can be expressed as

A = ΦΨ, ∈ RM×N

The selection matrix selects the rows of the channel matrix
for the measurement. This can be constructed by generating a
diagonal matrix and omitting the rows without a one:

Φ = diag
(

1 0 · · · 1 0
)

The generation of the values for the bipolar signal are usu-
ally constructed by generating a reference signal xRef ∈ RN in
the PWM domain with the sample rate of the PWM generator

x∗
Ref = 2sign (xRef)− 1N

The PWM signal x include about K ≈ N/2 ones and
zeros. Therefore the PWM vector is sparse subsequently the
following optimization problem can be solved:

arg min
x
‖y −Ax‖`2 s.t. xn ∈ {0, 1}

with the unrecoverable error ‖y −Ax‖`2 = ε. This is a
combinatorial problem and can be solved in deterministic
time. The complexity is exponentiel O

(
2N
)

to the amount
of PWM values. For large vectors with big values of N the
computational complexity is to high to compute the solution
in affordable time. Therefore a linear approximation of the
result by CS algorithms decrease the computation time to

polynomial complexity. The half PWM signal is usually with
ones ‖x‖`0 = N/2. Than the optimization problem is:

‖x‖`0 = N/2 s.ty = Ax, xn ∈ [0, 1]

With the theory of CS for sparse vector x and low com-
pression, the problem can be relaxed to `1 minimization with
high probability of correct result. Therefore the combinatorial
minimization problem is relaxed to:

arg min
x
‖x‖`1 s.t.y = Ax, xn ∈ [0, 1]

A threshold analysis of the `1 minimization as shown in [4]
states that it is possible to recover the signal for M

N = 2.
In this presented work, we can not reconstruct the signal

without an error, so the optimization is adopted to

arg min
x
‖x‖`1 s.t. ‖y −Ax‖`2 ≤ ε, xn ∈ [0, 1]

y ∈ RM
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Figure 1. Block diagram of the PWM optimization problem

IV. ALGORITHMS

For our optimization we use greedy algoritms that im-
prove the result in each iteration. Therefore we analyze the
Matching Pursuit (MP) algorithm from [5] Mallat and the
extended version Orthogonal Matching Pursuit (OMP) from
[6] Pati. Further the Compressed Sampling Matching Pursuit
(CoSaMP) from [7] from Needell is observed.

The applied algorithms are the Orthogonal Matching Pur-
suit (OMP) and the Constraint BY Linearization Algorithm
(COBYLA) for constraint optimization from Powell [8]. The
CoSaMP algorithm is not applicable to our problem because
it usese 2K Elements for optimization and for PWM there
are about K = N/2 values that are not zero and therefore all
elements have to be used for calculation. The OMP algorithm
uses the pseudo inverse to estimate the amplitudes of the data
for the used idices. The Matching Pursuit algorithm adds at
every iteration a new index to the unknown vector.

Our algorithm is based on the MP algorithm by setting
the highest value to one and therefore it is named Binary
Matching Pursuit (BMP). In the next iteration the value for the
determined indices is set to infinity or to a small value, that
the maximum search discard this value and find a new index
with a maximum value. The algorithm add at every iteration
an indice and after K iterations the algorithm finishes the for
loop. A detail functional description is shown in algorithm
1. The complexity of the algorithm increases qudratic to the



Algorithmus 1 Binary Matching Pursuit (BMP) algorithm
Require: sensing matrix A, measerement vector y, coeffi-

cients count K
1: x̂← 0, r0 ← y, Λ0 ← ∅
2: for i← 1; i← i+ 1 until i > K do
3: g ← ATri−1 . Estimate signal from the residue
4: gΛi−1

← −∞ . Disable the estimated indices
5: λ← supp (H1 (g)) . Find index of greatest value
6: Λi ← Λi−1 ∪ λ . Add the new index to the set
7: x̂i|Λi ← 1 . Set the values to one
8: x̂i|Λc

i
← 0 . All other values to zero

9: ri ← y −Ax̂i . Calculate the residue
10: end for
Ensure: Coefficient vector x̂

number of unknowns in x, O
(
MN2

)
. The BMP algorithm

minimizes the problem formulation

arg min
x
‖y −Ax‖`2 s.t. ‖x‖`0 = K, xn ∈ {0, 1}

For better comparison we use the Constraint BY Lineariza-
tion Algorithm (COBYLA) to calculate the optimal PWM
values. This algorithm minimizes constraint optimization prob-
lems with x ≥ 0. The constrainst are adjusted, that the
algorithm minimizes the following problem formulation

arg min
x
‖y −Ax‖`2 s.t. 0 ≤ xn ≤ 1

To calculate the PWM values a threshold with 0.5 is applied
to the optimized values

xn =

{
0 xn < 0.5

1 xn ≥ 0.5

The initial values for COBYLA are the reference PWM values
by generating from a reference sinus wave, multiplied by the
channel. To avoid additional error by wrong phase, the phase
of the reference signal is adjusted to get the minimum error ε.

V. SIMULATION

Numeric simulation are performed for a channel that consist
of a ultrasonic transmitter and receiver with the resonance
frequency fRes ≈ 40 kHz. This channel has been measured
for a distance of 1 m using a vector analyzer. The metric for
comparison between the different PWM generation methods
is the unrecoverable error ε. This is calculated for every
value and method. The reference PWM signal is generated by
generating different sinus singals with different phase shifts,
multiplied with the channel and search the minimum error ε at
different phases. The reference signal y is a sinus signal with
40 kHz. The break condition for the BMP is the iteration count.
COBYLA stops when the reduction of the error is smaller than
1 · 10−7.

The first simulation in figure 2 shows the error ε for different
pulse length for an ADC sampling frequency of 100 kHz and
a PWM sampling frequency of 200 kHz. The graphs shows,
that the optimization algorithms outperform primitve PWM
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Figure 2. Error ε for different time length of the PWM pulse for N/M = 2
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Figure 3. Error ε for different compression factors with ADC sampling
frequency 100 kHz

generation for higher time durations. For the primitive PWM
generation and the COBYLA optimizad PWM there is a linear
up trend. Whereby the BMP optimized PWM converged to a
constant error.

A further simulation shows in figure 3 the error ε for differ-
ent compression factors N/M at an constant ADC sampling
frequency of 100 kHz and a pulse length of 0.5 ms. For small
compression factors and therefore for low PWM frequencies
the optimization generates better performance than primitive
PWM generation. For larger compression the error between
the methods gets smaller and the difference is not significant.

To see the difference of the generated signals the difference
of the optimized vector x is calculated

v = |diff (x)|

Then a set ΩOnes = {supp (v) |vi = 1} contains the indices
where v = 1 and this set is formed into a sorted vector w, the
difference is taken and the step is the cumulative sum

sp =

p∑
j=0

diff (w)j

with the step iteration p. The results for the three methods are
shown in figure 4. The primitive PWM has always the same
pulse width between the steps. Whereby the BMP optimized
PWM differ in the pulse width between the steps. This is the
reason for smaller error ε.

To see the enhancement of the signals at the receiver,
another simulation has been done with an ADC sampling
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Figure 4. Step difference of the PWM width for primitive and optimized
PWM

time in ms
0 0,1 0,2 0,3 0,4 0,5

Reference sinus signal
Primitve PWM generated signal

COBYLA optimized PWM generated signal
BMP optimized PWM generated signal

(a)

(b)

(c)

Figure 5. Sinus signal generated by PWM and multiplied with the channel
for different methods. (a) primitive PWM generation, (b) optimized PWM
generation by COBYLA, (c) optimized PWM generation by BMP

frequency of 100 kHz and a PWM sampling frequency of
200 kHz. The generated PWM signals are folded with the
channel and the resulting sinus signals are shown in figure
5. The sinus signal shaded in gray is the reference signal
when generated in the ADC sampling frequency domain. By
comparing the prmitive generated sinus signal in figure 5a with
the BMP optimized sinus in figure 5c, the BMP optimized
sinus obviously fits better the reference signal than the prim-
itive generated sinus signal. Especially in the middle of the
sequence, the BMP optimized sinus signals fits nearly perfect
the reference signal.

VI. CONCLUSION

We introduce for binary optimization especially for PWM
generation an adopted Binary Matching Pursuit (BMP) al-
gorithm. The simulation results shows, that the algorithm
outperforms the primitive and COBYLA optimized PWM
generation. Especially for small compression factors, the BMP
can improve the signal by optimizing the PWM. For higher
compression factors and therefore higher PWM sampling
frequencies their is no significant improvements of the signal
by the optimization algorithms.
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