

Optimized Sinus Wave generation with Compressed Sensing for Radar Applications

Alexander Ens et al.

October 1, 2013

UNI FREIBURG

- 1 Introduction to ultrasonic Radar
- 2 Compressed Sensing for Sinus Generation
- 3 Algorithms for Binary Compressed Sensing
- 4 Simulation Results

1 Introduction to ultrasonic Radar

Simulation Results

Ultrasonic Radar

- \blacktriangleright Slow wave propagation $v_0 \approx 330 \ {\rm m/s}$
- \blacktriangleright Low frequency system in 40 kHz range \rightarrow No downmixing
- High precision with simple hardware
- Short range Radar

Figure: Blockdiagramm of ultrasonic Radar

Reduce the error of sinus generation

$$\epsilon = \| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{x} \|_{\ell_2}$$

- Better SNR at the receiver without channel estimation
- Simple signal processing at the receiver
- Reduce the compution time

Introduction to ultrasonic Radar

- (2) Compressed Sensing for Sinus Generation
- Algorithms for Binary Compressed Sensing
- Simulation Results

Mathematical Formulation I

Measured characteristic of ultrasonic devices \rightarrow channel information

 $f_{\rm ADC} < f_{\rm PWM}$

Figure: Scheme of PWM generation

Mathematical Formulation II

Problem Formulation

$$\arg\min_{\boldsymbol{x}} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_{\ell_2} \qquad \text{s.t. } x_n \in \{0, 1\}$$

with the channel matrix

$$oldsymbol{A} = oldsymbol{\Phi} oldsymbol{\Psi}, \qquad oldsymbol{A} \in \mathbb{R}^{M imes N}$$

and the transformed reference sinus signal

$$\boldsymbol{y} = 2\boldsymbol{y}_{\mathrm{Ref}} - \mathbf{1}_M$$

The problem formulation is then:

 $\arg\min_{\boldsymbol{x}} \|\boldsymbol{x}\|_{\ell_1} \qquad \text{s.t.} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_{\ell_2} \leq \epsilon, \ x_n \in [0, 1]$

October 1, 2013

Mathematical Formulation II

Problem Formulation

$$\arg\min_{\boldsymbol{x}} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_{\ell_2} \qquad \text{s.t. } x_n \in \{0, 1\}$$

with the channel matrix

$$oldsymbol{A} = oldsymbol{\Phi} oldsymbol{\Psi}, \qquad oldsymbol{A} \in \mathbb{R}^{M imes N}$$

and the transformed reference sinus signal

$$\boldsymbol{y} = 2\boldsymbol{y}_{\mathrm{Ref}} - \mathbf{1}_M$$

The problem formulation is then:

$$\arg\min_{\boldsymbol{x}} \|\boldsymbol{x}\|_{\ell_1} \qquad \text{s.t.} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_{\ell_2} \leq \epsilon, \ x_n \in [0, 1]$$

Alexander Ens et al.

-0.-

Introduction to ultrasonic Radar

3 Algorithms for Binary Compressed Sensing

Simulation Results

Compressed Sensing algorithms for PWM generation

Analysed Algorithms for PWM generation:

- Constraint Optimization BY Linearization Algorithm COBYLA
 [1]
- Binary Matching Pursuit (BMP), further development of the MP [2]

- Iterative algorithm for binary underdetermined optimization
- Solves following optimization problem:

$$\arg\min_{x} \|y - Ax\|_{\ell_2}$$
 s.t. $\|x\|_{\ell_0} = K, x_n \in \{0, 1\}$

• Complexity: $\mathcal{O}(MN^2)$

Require: sensing matrix \boldsymbol{A} , measurement vector \boldsymbol{y} , coefficients count K

1:
$$\hat{m{x}} \leftarrow m{0}$$
, $m{r}_0 \leftarrow m{y}$, $\Lambda_0 \leftarrow \emptyset$

2: for $i \leftarrow 1$; $i \leftarrow i + 1$ until i > K do

3:
$$oldsymbol{g} \leftarrow oldsymbol{A}^T oldsymbol{r}_{i-1}$$

4:
$$\boldsymbol{g}_{\Lambda_{i-1}} \leftarrow -\infty$$

5: $\boldsymbol{\lambda} \leftarrow \operatorname{supp}(H_1(\boldsymbol{a}))$

5:
$$\lambda \leftarrow \operatorname{supp}(H_1(\boldsymbol{g}))$$

$$6: \quad \Lambda_i \leftarrow \Lambda_{i-1} \cup \lambda$$

7:
$$\hat{x}_i|_{\Lambda_i} \leftarrow 1$$

8:
$$\hat{x}_i|_{\Lambda_i^c} \leftarrow 0$$

9:
$$oldsymbol{r}_i \leftarrow oldsymbol{y} - oldsymbol{A} \hat{oldsymbol{x}}_i$$

10: end for

Ensure: Coefficient vector \hat{x}

Estimate signal from the residue
 Disable the estimated indices
 Find index of greatest value
 Add the new index to the set
 Set the values to one
 All other values to zero
 Calculate the residue

Introduction to ultrasonic Radar

Compressed Sensing for Sinus Generation

Algorithms for Binary Compressed Sensing

4 Simulation Results

Different time length

Figure: Error ϵ for different time length of the PWM pulse for N/M=2

Different compression factors

Figure: Error ϵ for different compression factors with ADC sampling frequency 100 kHz

PWM steps

Figure: PWM generated signals with different methods

Optimized sinus signals

Figure: Sinus signal generated by PWM and multiplied with the channel for different methods.

Introduction to ultrasonic Radar

Compressed Sensing for Sinus Generation

Simulation Results

Summary

- Economically sinus generation by PWM
- Both optimizations decreases the error
- BMP complexity is $\mathcal{O}(MN^2)$
- BMP algorithm performs best

Thank you for your Attention!

October 1, 2013

References

- M. J. D. Powell, "Direct search algorithms for optimization calculations," *Acta Numerica*, vol. 7, pp. 287–336, 1998.
- S. Mallat and Z. Zhang, "Matching pursuits with time-frequency dictionaries," *IEEE Transactions on Signal Processing*, vol. 41, no. 12, pp. 3397–3415, 1993.

