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Abstract—Compressive Sensing (CS) has demonstrated to be 
particularly adapt for dealing with the directions-of-arrival 
(DoAs) estimation of electromagnetic signals impinging on an 
array of sensors. Unlike deterministic CS methods, the Bayesian 
CS (BCS) allows to overcome some theoretical limitations of the 
CS, such to enable a reliable and versatile DoAs estimation tool 
able to work with different array, noise and signals 
configurations. 
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I.  INTRODUCTION 

Compressive Sensing methodologies have been widely 
used with prominent results in several electromagnetic 
applications. Among them, it is worth mentioning the 
microwave imaging [1-5], antenna arrays synthesis and design 
[6-8], array diagnosis [9, 10], and directions-of-arrival 
estimation [11-14].  

CS strategies can be used for signal recovery when the 
relationship between the data and the unknowns is linear and 
the signal is sparse or can be made sparse according to a 
representation with suitable basis functions. In the specific case 
of the DoAs estimation, the problem is intrinsically sparse 
since only a few angular directions, amongst the many that can 
be considered through a fine discretization of the observation 
angular domain, are characterized by an incoming signal. On 
the other hand, the problem is clearly non-linear because the 
unknown DoAs are embedded within the exponentials of the 
so-called steering vectors [15]. To avoid this problem, CS 
methods are aimed at recovering the sparse signal vector whose 
non-zero entries are then associated to the corresponding 
steering vectors such to determine the unknown DoAs.  

Thanks to such a reformulation of the original problem, 
several approaches based on deterministic CS have been 
proposed [11, 12] and effectively compared with state-of-the 
art approaches. More recently, a Bayesian version of the CS, 
namely the Bayesian CS, has been introduced [16] and suitably 
customized to deal with DoAs estimation problems [13, 14]. 
Unlike deterministic CS-based approaches that are aimed at 
minimizing the l1-norm of the signal vector while forcing the 
data fitting though a l2-norm constraint, in the BCS the problem 
is formulated as the retrieval of the maximally sparse solution 
that maximizes the a-posteriori probability of fitting the 

acquired data samples [16]. Although both CS and BCS can 
recover the DoAs within a single snapshot (i.e., with the 
voltages measured at the output of the receiving array elements 
at a single time instant), the precision and reliability of the 
results are strongly related to the condition of the scenario at 
hand (e.g., power of the signal with respect to the 
environmental noise, number of signals with respect to number 
of sensors).  

To cope with these problems, a different Bayesian CS 
approach has been proposed, namely the multi-task BCS (MT-
BCS) [17], which is able to deal with sparse problems whose 
solutions are correlated. The potentialities of such a method 
have been investigated in the framework of the DoAs 
estimation problems in [13, 14] where the retrieval of the signal 
directions have been carried out exploiting the information 
acquired at multiple consecutive snapshots. Thanks to use of 
more data, the MT-BCS has shown being more robust than the 
single-snapshot BCS approach and able to address complex 
problems characterized by challenging electromagnetic 
scenarios with low signal-to-noise ratio (SNR) or large number 
of signals arriving on the antenna. The price to pay is in this 
case the velocity of the DoAs retrieval. In occasion of the 
conference, the last advances at the ELEDIA Research Center 
on the MT-BCS for the robust DoAs estimation will be 
presented and discussed. 

II. MATHEMATICAL FORMULATION 

Let us consider an antenna array made of M  sensors. A set 
of P  narrow-band plane waves are impinging on the array 
from directions p , Pp ,...,1 . From a mathematical 

viewpoint, the relation between the measurable data (i.e., the 
open circuit voltages at the sensor output, 

 Mmd m ,...,1,d  ) and the unknown DoAs at the s-th 
snapshot of acquisition is [13] 

  )()()( sss fd    (1) 

where    and )(sf  are the matrix of the steering vectors 

and the signal vector [15], respectively. Moreover, )(s is the 

vector of the noise, supposed in this case additive and having 
Gaussian distribution with zero mean.  
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Figure 1.  Behavior of the RMSE (a) versus the SNR with P=4 signals and 
S={2, 5, 10, 25} snapshots and (b) versus P with S=10 snapshots and 

SNR={-5, 0, 10, 20}dB. 

 

The DoAs estimation is carried out by means of the MT-
BCS by discretizing the angular domain with a fine grid having 

a number of samples much larger than P  such that )(sf  turns 

out being sparse. The solution of the MT-BCS approach is 
given by the following expression [13] 
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where h  is the so-called hyper-parameter vector used to 

statistically-correlate (i.e., shh s  ,)( ) the probability 
distribution of the solutions amongst the different snapshots 
[17]. Since many coefficients of f̂  are not exactly zero 

because of the presence of the noise, the estimated DoAs , 

 are those of the steering vectors whose 

corresponding entries of the estimated signal vector 

p̂
Pp ,...,1

f̂  have 

values not close to zero. 

III. NUMERICAL RESULTS 

As representative results, Figure 1 shows the results of the 
MT-BCS when using a  array with half-
wavelength-spaced isotropic sensors. Supposing P=4, the root-
mean square error (RMSE) versus the SNR is reported in Fig. 
1(a) when varying the number of available snapshots P. In Fig. 
1(b), the analysis is performed versus P for different SNR 
values while fixing S=10. 
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