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Abstract: This paper discusses the direction of arrival
(DOA) estimation problem for multiple antennas. A spa-
tial domain compression scheme is proposed to compress
the redundant signal of the received antennas array, where
a Bernoulli distribution random weight matrix instead of a
Gaussian matrix is acted as the measurement matrix. An
angle sparse model is introduced to our scheme. The for-
mulated recovery problem is then solved based on the con-
vex programming using sparse Bayesian learning (SBL),
which do not need the number of the sources. The proposed
scheme is very applicable where the antenna receiver array
is very large. With less data, the proposed scheme can pro-
vide super DOA estimation performance. Simulation results
verify the usefulness of our scheme.

Keywords: Blind DOA estimation; Bayesian compres-
sive sensing; sparse bayesian learning.

1. Introduction

Direction of arrival (DOA) estimation is a fundamental
task in radar detection that has been recently investigated
in [1, 2]. Related theory points out that the numbers of
the antenna array is proportional to the degrees of detec-
tion, the additional degrees of freedom are well-qualified
for overcoming fading effect, enhancing spatial resolution,
strengthening parameter identifiability and also improving
target detection performance which has been applied in
phased array radar and multi-in multi-out (MIMO) radar.
However, the additional antenna channel also means that
more signal sampling, transition, storage and processing u-
nit are required , which would be a huge challenge to tradi-
tional radar system.

In radar detection, targets can be considered highly s-
parse in the background scene, which is consistent to the
compressed sensing (CS) theory. CS theory pointed out
that if the signal is compressible or sparse in a transform
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domain, then it can be recovered exactly with high probabil-
ity from fewer measurements via l1-norm optimization[3].
The CS radar system can achieve superior spatial resolution
as compared to traditional radar system thus caused much
attention[4–9]. The CS based DOA estimation methods
have been proposed in both time domain[6, 7] and spatial
domain[8, 9].

In this paper, we present a general scene for array receiv-
ing antenna in which reducing system complexity consider-
ably while keeping good performance of estimating target
parameters. The array signal is compressed with a Bernoulli
distribution random weight matrix, which is circuit feasibil-
ity to the radar system. An angle sparse model is introduced
to the compressed signal, with the angle information of the
targets are reconstructed through sparse Bayesian learning
(SBL) algorithm, of which the global minimum is at the
sparsest solution to the recovery problem[10, 11]. Simu-
lation result shows that the proposed approach can accom-
plish super-resolution by using far fewer samples than ex-
isting methods.

The rest of the paper is organized as follows. In section
2, we present the signal model for the proposed scheme.
In section 3, we present the DOA estimation method with
SBL. Simulation results are given in section 4. Finally, we
provide concluding remarks in section 5.

2. Signal model

2.1. System architecture

Consider a general antennas array model, as shown in
Figure 1. Suppose that a uniform linear antenna array
consisting of N elements, the distance of the adjacent el-
ements is no more than half of the received wavelength.
It is also assumed that there are K non-coherent targets
appear in the far-field of receive arrays and the k th tar-
get is at azimuth angle θk . The receiving signal matrix
X(t) = [x1(t);x2(t); . . . ;xN (t)] takes the form

X(t) = A(θ)S∗(t) +V∗(t) (1)



where xi(t) is the ith antenna receive signal; A(θ) =
[a(θ1),a(θ2), . . . ,a(θK)] is the direction matrix; a(θk) =
[1, ejω, . . . , ej(N−1)ω]T is the receive steering vector for θk
, where ω = −2πdsinθk/λ, and λ is the wave length;
S∗(t) = [s∗1(t); s

∗
2(t); . . . ; s

∗
K(t)] is the source matrix,

s∗k(t) is the transmitting signal of the source k ; V∗(t) is
the received additive white Gaussian noise.
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Figure 1. Receive signal model

The received signal of the antenna array is redundant,
the high-dimensional signal is really challenges our sys-
tem. The CS theory inspires that a (−1, 1) distributed
M × N Bernoulli random weight matrix Φ been applied
to the received signal, and the measured signal Y(t) =
[y1(t); y2(t); . . . ; yM (t)] is

Y(t) = ΦX(t) = ΦA(θ)S∗(t) +V(t) (2)

with V (t) denotes the measured noise matrix.

2.2. Sparse represention

Let Y be the discrete-time waveform of Y (t)
, by discretizing the angle space as B(θ) =
[b(θ1),b(θ2), . . . ,b(θP )] and P ≫ K, (2) can be
written as

Y = ΦB(θ)S+N = ΘS+V (3)

where Θ = ΦB(θ) is the sense matrix, S =
[s1(n); s2(n); . . . , sP (n)] where

sp(n) =

{
s∗k(n) if b(θp) = a(θk)
0 otherwise (4)

Suppose that the received noise N is incoherent with
ΘS. As the steering vector b(θp) can be regard as dis-
crete single-frequency sinusoidal signal with frequency ω =
−2πdsinθp/λ, the base matrix B(θ) can be considered as
a Fourier matrix, the incoherent measurement matrix Φ
ensures the sense matrix Θ satisfy the restricted isometry
property (RIP)[3].

2.3. Blind DOA estimation method

The the covariance matrix R can be expressed as

R = ΘSSHΘH +VVH = ΘΛΘH + σI (5)

which can be estimated with L snapshots by
∧
Ry=

1
L

∑L
l=1 Y(l)YH(l) .Define the vectorization operation

vec as vec([r1, r2, . . . , rN]) = [r1; r2; . . . ; rN] ,which re-
arranges the matrix by column vector, where ri is a column
vector. Rearrange the covariance matrix

vec(R) = vec(ΘΛΘH) + vec(σI) (6)

with the property vec(ABC) = (CT ⊗A)vec(B) where
⊗ represents the Kronecker product, rewrite (6) as

vec(R) = (Θ∗ ⊗Θ)vec(Λ) + vec(σI) (7)

where vec(Λ) is a sparse vector with K nonzero elements
corresponding to the Kronecker product of steering vector
in (Θ∗ ⊗Θ). It is indicate that there is a P 2 × P selection
matrix Q and a P×1 sparse vector w fulfills vec(Λ) = Qr
, where the elements in w represents the elements on the
diagonal of Λ.

With the property (A⊗B)U = A ◦B , where U is a
selection matrix and ◦ stands for the Khatri-Rao product
of the matrix, which equals to the Kronecker product by
column. (7) can be rewrite as

vec(R) = (Θ∗ ◦Θ)w + vec(σI) = Ψw + n (8)

3 The SBL based recovery method

3.1. The sparse recovery problem

Let y = vec(R) = Ψw + n , our object is recovery
w from y . The nonzero location in w stands for the DOA
of the source, the DOA estimation problem from (8) can be
formulated as the convex problem

∧
w= arg min∥ w ∥0 , s.t. y = Ψw + n (9)

the operation ∥w∥0 denote the l0-norm of the sparse vec-
tor w . In general, this problem is NP-hard. It has been
proved that the l0-norm is equal to the l1-norm under cer-
tain conditions. Usually a relaxed optimization problem via
constraint weighted l1-norm replacing (9). The optimiza-
tion function can be rewritten as

∧
w= arg min∥ y −Ψw ∥22 + ∥ w ∥1 (10)

,where ∥ w ∥1 denote the l1-norm of the vector w and η is
a tradeoff parameter balancing estimation quality.



3.2. SBL recovery

The sparse Bayesian framework assumes an independent
zero-mean Gaussian noise with variance σ2 , the probability
density function (PDF) of the vector y is

p(y|w, σ2) = (2πσ2)−M/2exp

{
∥y −Ψw∥22

2σ2

}
(11)

The prior over the parameters supposed subject to a Gaus-
sian prior

p(w|α) = (2π)−P/2
P∏

p=1

α1/2
p exp

{
−

αpw
2
p

2

}
(12)

where the key to model the sparsity is the use of the P
independent hyperparameters α = [α1, α2, . . . , αP ]

T ,
which moderate the strength of the prior. The posterior
parameter distribution is also Gaussian after given α , and
p(w|y,α) = N(w|µ,Σ) with the mean given by

µ = σ−2ΣΨHy (13)

and the covariance

Σ = (Γ+ σ−2ΨΨH)−1 (14)

where Γ = diag(α) .
If we initially set α to a given non-zero vector, with the

iteration of the algorithm, which along with (13) and (14),
many parameters α will be driven to infinity while the α
corresponding to the DOA of the targets retain relatively
small.

3.3. Scheme analysis

If all the signal X(t) have been sampled, there requires
at least N analog-to-digital converters (ADC) and N ×M
data storage unit, while our scheme only requires M ADC
and M × L data storage unit. As all the data XN×L can be
restored from YM×L , the effective aperture of the antenna
in our scheme is N instead of M , which means that our
scheme keeps the effective aperture of the antenna as well
as reduce the number of the sampled data. And our spa-
tial domain compressed scheme retains space for improving
the estimation performance with traditional method, such as
signal accumulation in time domain, changes compression
ratio adaptively to different application scenarios, etc.

The cost function can be globally minimized using a va-
riety of optimization algorithms, such as OMP, FOCUSS
and SBL, among which Bayesian algorithms generally
achieve the best recovery performance. SBL is one impor-
tant family of Bayesian algorithms, it can be considered as
an l1-weighted algorithm. The maximum a posteriori prob-
ability criterion helps SBL to pursuit the optimal regulariza-
tion parameter, thus adaptively reach the best performance,
especially faced with strong correlation of the atoms.

4 Simulation results

Simulation conditions: uniform linear array with total
antenna N = 30 , compressing rate r = M

N = 10
30 = 0.33

, K sources located at angles 30◦, 40◦, 50◦ separately, the
snapshot is 200, and the signal power are all 1.
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(a) SNR = 10dB

20 30 40 50 60 70
−60

−50

−40

−30

−20

−10

0

angle (degree)

m
ag

ni
tu

de
 (

dB
)

 

 

MUSIC with 30 antennas
MUSIC with 10 antennas
Our scheme

(b) SNR = 20dB

Figure 2. Simulation1 result

Simulation 1: The estimation results of our scheme with
SNR = 10dB and 20dB separately. Figure 2 shows the
angle estimation results of our scheme compared with 10
and 30 antennas MUSIC algorithms. It can be seen that
our scheme performs as well as the uncompressed MUSIC
scheme.
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(a) L = 10

20 30 40 50 60 70
−60

−50

−40

−30

−20

−10

0

angle (degree)

m
ag

ni
tu

de
 (

dB
)

 

 

MUSIC with 30 antennas
MUSIC with 10 antennas
Our scheme

(b) L = 40

Figure 3. Simulation2 result

Simulation 2: The estimation results of our scheme with
snapshot L = 10 and L = 40 separately, SNR = 15dB.
Figure 3 shows the angle estimation results of our scheme
compared with 10 and 30 antennas MUSIC. From which
proves that our scheme perform well in the condition of s-
maller snapshot.

Simulation 3: The performance of our scheme with d-
ifferent SNR and snapshot. Define root mean squared er-

ror (RMSE) as 1
K

∑K
k=1

√
1
T

∑T
i=1(

∧
θi,k −θk)2 , where T

is the number that count successful recovery K targets in

1000 Monte Carlo simulations.
∧
θi,k is the estimate DOA

of θi,k . Figure 4 shows the RMSE of the SBL and OMP
algorithm with different SNR and snapshot. From which
we can see that the selected SBL algorithm perform much
good than the OMP algorithm.
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Figure 4. Simulation3 result

5 Conclusion

In this paper, we proposed a Bayesian compressive sens-
ing based blind DOA estimation scheme which can reduce
the complexity of traditional radar system while keep good
estimation performance. The proposed spatial domain com-
pression spatial scheme utilizes the sparsity of the targets
in the background scene to obtain the initial estimation of
DOA, and keeps the aperture of initial antenna array. Sim-
ulation results proved that the Bayesian based sparse recov-
ery method would achieve super performance in radar pa-
rameter estimation.
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