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Abstract—The choice of the grid for generating the sparsity induc-
ing basis or rather a corresponding dictionary is a central point of
compressed sensing and sparse approximation. A poorly chosen grid
corrupts the reconstruction performance. Here we consider the problem
of ground moving target indication from several — already processed —
synthetic aperture radar images and apply a recently introduced method
for reducing the effect of the grid.

I. INTRODUCTION

The basis or rather dictionary ¥ defining a sparse representation
x for compressed sensing (CS) or sparse approximation is usually
generated using an equidistant grid G. A wide grid spacing results
directly in signals that are not represented by the grid. These are
reconstructed consequently by approximation with a superposition
of signals represented by several neighboring gridpoints (i.e. neigh-
boring entries in x), resulting in less sparse representations. On the
other hand a fine grid reduces the performance of CS algorithms
(see Section II). Several approaches to mitigate the grid-effect are
proposed in literature, e.g. by definition of a minimal distance
between two nonzero entries of x as in [1] or by adaptively modifying
W (see [2]). Here we use the variant introduced in [3], that computes
for every entry of x an additional coefficient, representing the distance
from the gridpoint. This gives the opportunity to decrease the grid
size (compared to standard CS) and improve the performance of CS
due to lower mutual coherence and computation time.

In this paper we apply this approach to the problem of ground
moving target indication (GMTI) on the basis of different synthetic
aperture radar (SAR) images. This problem has been established since
the introduction of along-track interferometry (ATI) and displaced
phase center analysis (DPCA). While the two mentioned methods
allow just two receiving antenna channels, more sophisticated meth-
ods — like the EDPCA (cf. [4]) — also permit the usage of a higher
number of channels.

In [5] a first SAR-GMTI method based on CS was presented. Here
G is a grid
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of velocities. Since the velocity of a target is not known in advance,
an a priori adaption of the grid is impossible and velocities v with not
neglibible distance to G, occur regularly, decreasing the performance
of CS.

II. COMPRESSED SENSING AND GRID EFFECTS

Let y = Ax +n € CM be a vector of noisy measurements of a
G.-discretized sparse scenery x € CV.

A =[a(w),...,a(vo + (N —1)d,)] € CM*N

represents the likewise discretized measurement process, realized by
the product A = ®W of sparsifying matrix ¥ and the actual mea-
surement process ®. Here a : R — CM represents a differentiable
function, mapping the across-track velocities of the gridpoints to the

space of measurements. The aim is (cf. [6]) to reconstruct a sparse
X via a minimization like

% = argmin || Ax — y||2 such that ||x||o < 7/, (1)

where the /p-norm is mathematically intractable, but enforces the
sparsity of x. Here we consider convex relaxation (also known as
BP or LASSO) for solving this problem, so replacing || - |[o by || - ||1
and 7’ by 7, resulting in

X = argmin || Ax — y||2 such that ||x||; < 7. (2)
X

The quality of this relaxation depends (cf. [6]) on the mutual
coherence
w(A) o max(a(vg),a(v)).
k#l
Since a is a continuous function, p(A) is especially large for directly
neighboring gridpoints, so vy —v; = §,. Hence reconstruction is not
possible, if 4, is too small.

One approach to mitigate the effect of the grid spacing was
introduced in [3]: ¥ and consequently A are amended by additional
atoms, giving the opportunity to approximate all parameters of a
signal

y= Zbia(vi) with v; € G, (3)

i.e. to estimate the distances of the v; to the neighboring gridpoints
in addition to estimating b;. This is e.g. done by considering the
Taylor expansion of first degree for a velocity v in the interval [v,, —
0u/2,vn + 6,/2], ie.

ba(v) =~ ba(vy,) + b(v — vn)%a(v). 4)

Letting

A= {A, %] c cMx2N
ov

and reconstructing

X = [1‘0707. . ~,mO,N7xl,07 .. .,{ELN}

analogous to (2), the coefficients xo,, and x1, correspond to b
and b(v — vy) in (4). Consequently, a signal like y in (3) can be
reconstructed, if the sparsity assumption is fulfilled.

Since every target with an off-grid velocity is represented by just
two nonzero coefficients, there is no necessity for a dense grid for
sparse representation of targets, as long as the grid is dense enough to
separate targets. Consequently J,, may be enlarged, reducing M(A)
Moreover, a(v,) and %a(vn) are usually almost orthogonal to each
other. Hence the coherence M(A) is of course larger or equal than
wu(A) for the same d,, but usually smaller than the coherence of A
for dv /2, having the same number of columns.

Different expansions like a polar interpolation on a circle defined
by a(v, — §,/2),a(v,) and a(v, + d,/2) are of interest as well



and more accurate, but enlarge the number of coefficients and
enforce additional side conditions. See [3] for further theoretical
considerations. Moreover, the combined computation of data having
the same structure of nonzero elements using a multimeasurement
vector approach (MMYV, see [6]) is possible and will increase the
reconstruction performance.

III. VELOCITY ESTIMATION IN SAR IMAGES

For airborne multichannel stripmap synthetic aperture radar (SAR)
pulses are transmitted from approximately equidistant positions on a
linear flight path. The waves that are backscattered from earth are
received via M antennas. Here these are arranged in direction of
flight at positions d = [d1,...,dn] and measure amplitude, phase
and delay time. Every target is illuminated by several pulses. In con-
sequence — after some preprocessing — a two-dimensional SAR image
of size K x L may be computed from every channel via a classical
matched filter approach. Here moving targets are shifted parallel to
the flightpath by Ax = R-v/vp, where vp is the platform’s velocity,
v the across-track component of the target’s velocity and R is the
distance (slant range) between them. In consequence superposition
of objects of different across-track velocities are possible. Especially
moving and non moving targets can be imaged to the same pixel of
the SAR image, indepentently from the the pixel size.

Let Y € CKXEXM pe 4 gtack of M SAR images from the different
channels. For every pixel (k,[) there are M measurements yx,; €
CM, representing a superposition of targets of different velocities.
Here a target of across-track velocity v,, generates a signal which is

275 vn

normalized to
1
a(v,) = —ex -d),
= oo (5 1na)

where A denotes the wavelength and v, € §,. Defining A as in
Section II, we obtain an excerpt of the Fourier matrix, a case well
known in CS theory. Moreover, the expansion to the off-grid case A
is performed via the additional, normalized columns

Using A we can reconstruct X by (2), e.g. by the SPGl1-algorithm
proposed in [7].

A first comparison of the quality of classical beamforming, original
CS and the off-grid CS inspiried by a Taylor expansion is given in
the simulative results in Figure 1. Here we use velocity grids G,, with
0, = 1.2m/s on the left and 0.3 m/s on the right, both times ensuring
0 € G,. Furthermore, we define d = [—28.4,—9.6,9.6,28.4] cm,
vp = 8 m/s and A = 3cm. In both cases, we tried to reconstruct
one target moving with a velocity that is in the middle between
two gridpoints. In case of the off-grid CS we used the coefficients
of the derivatives for repositionating the gridpoints. Clearly, the
Taylor inspiried CS approach outperforms both, classical CS and
beamforming in terms of leakage and positioning accuracy.

For real data computations we consider a data set with the
same antenna parameters as for the simulations and use the grid
{-3,-1.5,0,1.5,3} m/s. A SAR image of one channel is presented
in Figure 2. For reasons of computation time we consider in the
following just the area inside the red rectangle.

In the upper left corner of Figure 3, the reconstruction using
CS without off-grid considerations — as proposed in Section II —
is presented. This serves as a basis of comparison for the other
results. The velocities and amplitudes of the moving targets are
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Figure 1. Reconstructions of one simulated signal at v = 0.6 m/s with §,, =

1.2 m/s (left) and at v = 0.15 m/s with §,, = 0.3 m/s (right), normalized to the
same ¢2-norm using Taylor-CS (blue), classical CS (green) and beamforming
(red) compared to the ground truth (black)
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Figure 2. SAR image of one channel, area used for following figures is
indicated by the red rectangle

depicted via the color defined by the colorbars in the lower right
corner of Figure 3. For reasons of visibility we marked scatterers
with velocity above 0.7 m/s and amplitude larger than 27 dB, only. In
the upper right corner we see the result using the proposed aproach
that considers off-grid velocities, while in the lower left corner this
approach is expanded by jointly processing 4 neighbouring pixels and
by using a weighted norm, enlarging probablility of the reconstruction
of nonmoving targets. The latter is sensible, since moving targers are
sparsely distributed in the whole scenery.

In all three images we see the 7 moving targets clearly recon-
structed, while the remaining scenery is mostly filled with non
moving clutter. The alarms above and beneath strong targets are
induced by range sidelobes since range compression is performed
using the classical matched filter. Consequently the only false alarm
is that one in the upper right image at range 2086 m and azimuth
2150 m, being 1.4 dB above the threshold.

A much higher velocity resolution is the main advantage of the
proposed approach. This is visible in Fig. 4. It presents sections at
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Figure 3. Reconstruction of the scenery marked in Fig. 2 using standard CS approach (without off-grid consideration, upper left), Taylor CS approach (upper

right) and additional MMV and weighting (lower left)
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Sections through the results of Fig. 3 at range 2013 m and norms of the results of standard CS approach (x5, upper left), Taylor based CS

approach (x upper right) and polar interpolation based CS (x. lower left) depending on the velocity

range 2013 m through the reconstructions without off-grid considera-
tion (upper left), with off-grid consideration (upper right) on basis of
the Taylor expansion and with off-grid consideration (lower left) on
basis of the polar interpolation. In the upper left image, the clutter
and the target (at 200 m in azimuth) are not separated and there is
leakage of the target in other velocities. Both effects are reduced
in case of off-grid CS, independent from the method, so the velocity
can be determined better. Moreover, a variability of the clutter around
Om/s can be observed, due to inner clutter movement.

At the lower left corner of Fig. 4 the plot of the norms of the same
reconstructions, depending on the velocity, are presented. Since the
targets move intentionally with approximately the same velocity, we
see here a good separation between the clutter and the moving targets.

IV. CONCLUSION

In this paper we presented results of a new off-grid CS method to
the problem of detecting ground moving targets from SAR images.
Computations on simulated as well as on real data show its advantage
over standard CS methods. This encourages further research regarding

e.g. optimal parametrization or analysis of the approach’s statistical
behavior.
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