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Abstract—The parameter estimation of a distributed target
with several moving elements is an important question in radar
based security applications. In this paper, a solution of this
problem is proposed by using an incoherent radar sensor network
as well as signal processing methods known from the area
of Compressive Sensing. Thereby, three different algorithms
are evaluated: Orthogonal Matching Pursuit (OMP), SIMPLEX
and nonlinear Convex Optimization. It can be shown that a
relative small number of radar channels is sufficient to determine
positions and velocity vectors of many point scatterers included
in the analyzed scene.

I. INTRODUCTION

Radar based sensors operating at millimeter wave frequen-
cies provide powerfull tools in the area of security applica-
tions. Thereby, the precise knowledge of the target’s motion
parameters is a crucial requirement for signal processing using
SAR techniques. During scene reconstruction, a certain phase
history is assumed for each point target, based on the sensor
position over time. For a moving target, this assumption is not
valid anymore, so an unambiguous solution is not possible. In
order to resolve this ambiguity, various autofocus algorithms
have been developed in the past.

In case of a distributed target with several different velocity
components a motion estimation with conventional methods is
not possible due to the large number of unknown parameters,
so more advanced algorithms must be applied. The fast deve-
loping field of Compessive Sensing (CS) provides a possible
solution to this problem. Using CS methods the ambiguity of
scene reconstruction can be resolved with an “overwhelming”
probability by selecting a solution vector which is optimal with
respect to certain additional requirements. For instance, one
can look for a scene containing the lowest possible number of
point scatterers (`0-norm minimization).

The present paper presents a theoretical approach for
parameter estimation of a distributed moving scene by means
of a multichannel radar network and a signal processing based
on Compressive Sensing methods.

II. SIGNAL MODEL

A. Generic Geometry

In the presented work a 2-dimensional generic measure-
ment geometry corresponding to Fig. 1 is assumed. The
analyzed scene contains Np independent point targets with
a velocity vector assigned to each. The scene is surrounded

Fig. 1. Generic measurement geometry consisting of a 2-dimensional scene
surrounded by 7 radar sensors (S1 to S7); the velocity vector of each point
scatterer is indicated by an arrow

by Ns radar sensors with broad antenna beams and thus no
directivity. In the simplest case, each sensor consists of a trans-
mitter and a receiver in monostatic geometry, but a multistatic
or even a MIMO configuration are also imaginable. Further,
no interaction between the single sensors and no multiple
reflections between point targets are assumed. Because of the
large distance between two sensors there is also no coherent
phase relation between the channels.

B. Measurement Data

For simulation of the multichannel radar system a simple
stepped-frequency approach was chosen. During the mea-
surement time each sensor transmits a series of Nt pulses
with Nf discrete frequency steps in each. Summarized, the
measurement data consists of

M = NsNfNt (1)

complex samples. Assuming a constant velocity of the n-th
point target its position ~pn can be expressed as:

~pn(t) = ~p0,n + ~vnt (2)

with t being the time, ~p0,n the position for t = 0 and ~vn the
velocity vector of the n-th scatterer. Using the position ~pm of
the m-th sensor the range history Rm,n can be calculated for
each combination of (m,n):

Rm,n(t) = |~p0,n − ~pm + ~vnt| ≈ R0,m,n + vr,m,n t (3)
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Fig. 2. Example of a Range-Velocity-Map with 5 point scatterers calculated
using (a) Rectangular and (b) Hann window functions

with R0,m,n representing the distance between m-th sensor and
n-th scatterer for t = 0 and vr,m,n being the corresponding
radial velocity.

For a given time t and a given frequency f the measure-
ment data from a single scatterer can be written as:

Dm,n(f, t) ≈ An · e−j2πfT0,m,n · e−j2πfd,m,n t (4)

with

• An: complex amplitude of the n-th scatterer,

• T0,m,n = 2R0,m,n/c0: propagation time for t = 0,

• fd,m,n ≈ 2fcvr,m,n/c0: Doppler frequency,

• fc: center frequency of the transmitted signal.

Using equation 4 the received signal of the m-th sensor
can be calculated:

Dm(f, t) =

Np∑
n=1

Dm,n(f, t). (5)

It should be mentioned that some assumptions like a
small relative bandwidth and a short measurement time have
been made during this derivation. Nevertheless, the proposed
method is not restricted to these assumptions as long as the
measurement data can be compressed to Range-Doppler-Maps
corresponding to section III.

III. RANGE-VELOCITY-MAPS

As shown in the previous section, the measurement data
of each radar sensor consists of Nt × Nf complex samples.
According to equation 4 the variables t and f are located
in two independent exponential terms, so a Fast Fourier
Transform (FFT) can be calculated along the t and f -axes.
After this operation all point scatterers of the analyzed scene
are separated depending on their sensor distances R0,m,n and
their radial velocities vr,m,n. This way, the measurement data
is consequently transformed into Ns single Range-Velocity-
Maps corresponding to the number of radar channels. Fig. 2a
shows an example of a RV-Map with 5 point targets.

The maximum separation of point targets is the main
intention for the calculation of RV-Maps previous to scene
reconstruction. A further important reason is data reduction
as a first step to a sparse signal representation. By applying
a significance threshold to a RV-Map all elements below
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Fig. 3. Average number of significant elements in the Point Spread Function
of a harmonic signal weighted with different window functions

the threshold can be neglected, which allows an economical
memory use. To keep the number of non-zero elements as
low as possible, the measurement data can be weighted using
different window functions before Fourier transform. Fig. 3
shows the average number of non-zero elements depending on
the significance threshold and the used window function. It
is obvious that the Hamming window is the best choice if all
elements below -40 dB can be neglected. For a lower threshold
also the Hann window might be preferred (see Fig. 2b).

As mentioned above, the phases of a RV-Map don’t contain
useful information, as the distances between sensors are very
large relative to the signal wavelength and the real-world
targets usually cannot be represented by ideal point scatterers.
The processing steps of a RV-Map are summarized below:

• weighting with 2-dimensional Hamming window,

• 2-dimensional Fast Fourier Transform,

• amplitude calculation by dismissing the signal phase.

IV. CS-SOLUTION

Compressive Sensing is a rapidly developing research area,
which tries to overcome the limitations given by the Shannon-
Nyquist sampling theorem. The main idea behind CS is that
a signal can successfully be reconstructed from an insufficient
set of measurement data if its information content is only low
enough. As the measure of information is strongly related to
the number of vector elements, this statement is equivalent to
the requirement for a sparse signal representation. A general
CS problem can be written as:

D = ΦS (6)

with S being the unknown signal (in our case corresponding to
scene reflectivity), Φ representing the M ×N sensing matrix
with M < N and D containing the measurement data. The
linear system given by equation 6 is underdetermined, so an
unique unambiguous solution doesn’t exist. The CS based
approach looks for a particular solution with a minimized `0
respective `1-norm:

SL0 = min
S
{‖S‖0 : D = ΦS} (7)

SL1 = min
S
{‖S‖1 : D = ΦS} . (8)



TABLE I. LIST OF SIMULATION PARAMETERS

Parameter Value Description
fc 94 GHz Signal center frequency
B 5 GHz Bandwidth
dT 1 ms Time between two pulses
Nf 48 Number of frequency steps
Nt 30 Number of pulses
Ns 3, 5, 7, 9, 12 Number of sensors
Np 1 – 30 Number of point targets
Nr 900 Spatial discretization (30 × 30)
Nv 577 Velocity discretization

In case of a noisy measurement the constraints can be
modified to allow a certain reconstruction error ε2:

SL1 = min
S

{
‖S‖1 : ‖D − ΦS‖22 ≤ ε2

}
. (9)

Some early work on sparse signal reconstruction is described
in [1]–[3], further results are presented in [4]–[8].

A. Orthogonal Matching Pursuit

The Matching Pursuit Algorithm was firstly introduced
by Zhang in 1993 [9] and later extended by Pati et al. to
Orthogonal Matching Pursuit [10]. This “greedy” approach
tries to reconstruct the signal piece by piece until no significant
improvement can be achieved. This algorithm can be easily
implemented and provides excellent behaviour in terms of
stability and convergence. Unfortunately, no guarantees for the
reconstruction quality can be given. In the present case, OMP
was slightly modified to deal with non-negative numbers.

B. SIMPLEX Algorithm

The SIMPLEX algorithm was introduced by Dantzig [11]
in 1947 and efficiently solves a linear optimization problem of
the type:

xopt = max
x

{
cTx : Φx ≤ b, x ≥ 0

}
. (10)

This approach maximizes the objective function cTx under the
constaints Φx ≤ b and x ≥ 0. By taking the absolute value of
both sides of equation 6 one yields:

|D| = Da ≤ ΦaSa = |Φ| · |S|. (11)

Using this expression the optimization problem 8 can be
rewritten corresponding to the SIMPLEX formalism:

Sa,opt = min
Sa

{‖Sa‖1 : ΦaSa ≥ Da, Sa ≥ 0} . (12)

The described algorithm was implemented using the GPL
software package lp solve, which can be accessed from many
programming enviroments [12].

C. Nonlinear Convex Optimization

The first two CS solutions presented in this paper deal with
the optimization problem given by equation 8. In case of noisy
measurement data, additional constraints must be added to
equation 9 to match the requirement for non-negative numbers
(see section III):

Sa,opt = min
Sa

{
‖Sa‖1 : ‖Da − ΦaSa‖22 ≤ ε2, Sa ≥ 0

}
.

(13)
To solve this nonlinear optimization problem, the Log-Barrier
method can be applied [13], [14]. The main idea behind this
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Fig. 4. Average accuracy of CS-reconstruction as correlation factor between
original and calculated scene for (a) OMP and (b) SIMPLEX algorithms

concept is to approximate the constraints in equation 13 by
differentiable logarithmic functions. In doing so, the solution
can be found by minimizing the objective function

u(Sa) =

N∑
i=1

Sa,i −
1

τ

(
log
(
ε2 − ‖ΦaSa −Da‖22

)
+

N∑
i=1

log(Sa,i)

)
(14)

with Sa,i being the i-th element of the vector Sa and the
constant τ representing a weighting value. The expression 14
can be minimized in an iterative way using a simple gradient
algorithm.

V. SIMULATION

A. Simulation Parameters

To validate the system design described in section II as well
as the CS-based algorithms proposed in section IV a series
of simulations was performed. Table I contains a list of the
corresponding simulation parameters.

The 2-dimensional measurement geometry defined by
Fig. 1 leads to a 4-D solution space with the dimensions
x, y, vx and vy . Although the solution vector contains only
few non-zero elements, the total number of base functions
can be calculated from Nr × Nv and corresponds to 519300
columns of Φ. Further, the number of data samples is defined
by equation 1 and counts 17280 in the case of 12 sensors. This
way, the sensing matrix Φ consists of nearly 9 · 109 elements,
which only can be handled using sparse data structures.

B. OMP Results

A series of simulations based on randomly generated mov-
ing scenes was performed for each combination of parameters
shown by Table I. The average reconstruction quality was
calculated as the correlation factor between original and recon-
structed scenes (see Fig. 4a). It is obvious that the algorithm
shows a better performance with an increasing number of
sensors and a decreasing scene complexity.

Additionally, a specific pattern consisting of 10 point
scatterers was analyzed. Fig. 5 shows the original scene as well
as the OMP reconstruction results for 3, 7 and 12 sensors. In
this presentation, each point target is represented by an arrow
indicating its velocity vector. The amplitude of a scatterer is
encoded by color.
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Fig. 5. Reconstruction of a generic moving scene using the OMP algorithm:
(a) original scene, (b)–(d) reconstructed with 3, 7 and 12 sensors

C. SIMPLEX Results

The average quality of SIMPLEX reconstruction based
on 100 randomly generated moving scenes is presented by
Fig. 4b. The algorithm shows a significant better performance
compared with OMP, especially if the analyzed scene contains
many point scatterers.

Moreover, the number of iteration steps as well as the
computing time strongly depend on the number of sensors and
scatterers. Empirical data show the following relationship:

• Iteration steps ∼ N2
pNs,

• Computing time ∼ N3
pN

2
s .

D. Convex Optimization Results

The accuracy of scene reconstruction from noiseless data
using nonlinear Convex Optimization is very close to those of
the SIMPLEX method (results not shown here). Anyway, by
adding noise to the measurement data the algorithms shows an
unexpected behaviour: the solution vector is not sparse any-
more and gets a “noise floor” around the true target positions
(see Fig. 6). A possible explanation is that the algorithm is
explicitly allowed to make reconstruction errors, which are not
restricted to the amplitude of true targets.

VI. CONCLUSION

The results of this paper show that the reconstruction of
distributed moving targets using Compressive Sensing methods
is possible, even if the single radar sensors are not coherently
linked to each other. While the OMP algorithm is fast and
easy to implement, the SIMPLEX approach provides a better
reconstruction quality. In case of noisy data, nonlinear Convex
Optimization is the method of choice.
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Fig. 6. Amplitude of scene reconstruction based on noisy measurement data
using nonlinear Convex Optimization: (a) SNR = 3 dB, (b) SNR = 10 dB, (c)
SNR = 20 dB, (d) SNR = 30 dB
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