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
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Introduction



 
Many potential targets of radar based sensors 
contain a large number of independently 
moving elements with parameters (x1

 

, y1

 

, vx1

 

, vy1

 

, 
…)



 
Conventional image reconstruction methods 
fail, as no unambiguous solution exists



 
Observation:

 
the most scenes can be 

described as sparse (the number of strong 
scatterers is relatively low)



 
→ Collected radar data contain much less 
information than is suggested by its

 bandwidth



 
Possible solution:

 
Compressive Sensing

2D-Example

3D-Example



Page 4 of 21

2nd International Workshop on Compressive Sensing applied to Radar

Simulated Geometry



 
Generic 2-dimensional scene with Ns

 

radar 
sensors located around the target 



 
Scene contains Np

 

moving point scatterers



 
Each sensor transmits a series of Nt

 

pulses 
with Nf

 

discrete frequency steps



 
→ Set of measurement data contains

 complex samples



 
Assumptions:



 
no coherency between sensors



 
velocities are nearly constant during 
the measurement time

Generic Measurement Geometry
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Signal Model



 
Position of n-th

 
scatterer:



 
Distance between n-th

 
scatterer and m-th

 
sensor:



 
Linear approximation:



 
Measured signal:



 
with propagation time: 



 
and Doppler frequency:



 
Signal of the m-th

 
sensor:



 
→ Scatterers can be separated depending on their distances and radial 
velocities relative to the sensor!
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Range-Velocity-Maps



 
Calculation using 2-dimensional FFT



 
RV-maps describe a moving scene from the 
perspective of a particular sensor



 
Scatterers are separated depending on their 
ranges and radial velocities



 
Data contains no directional information



 
Side-lobes can be reduced by applying window 
functions (e.g. Hann window) to measurement 
data



 
Number of non-zero elements is significantly 
reduced → „Sparsity“



 
RV-maps are the basis for further (CS-based) 
image reconstruction steps
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Problem Formulation



 
Measurement data of all sensors can 
be written as a single Vector D:



 
2D Fourier transform as well as 
filtering with Window functions can 
be expressed as multiplication with 
matrix Ψ:



 
Inequality of Cauchy-Schwarz:



 
Linear optimization problem:



 
Introducing of reconstruction error E:



 
Nonlinear optimization problem:
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Simulation Parameters



 
Simulation of 100 randomly generated scenes with 1 –

 
30 moving point 

scatterers and CS reconstruction based on data of 3 –

 
12 sensors



 
Statistical analysis of simulation results



 
Additional:

 
Simulation and reconstruction of a test pattern



 
Evaluation of 3 algorithms: OMP, SIMPLEX, nonlinear convex 
optimization
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Orthogonal Matching Pursuit



 
Iterative approach, belongs to the “greedy”

 
algorithms



 
Selection of one base function (column of sensing matrix) during

 
each 

iteration step and termination if no improvement is possible anymore



 
Suboptimal method, but easy implementation



 
Adoption to deal with positive-valued

 measurement data and positive-valued

 sensing matrix:



 
original:



 
changed:
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OMP: Random Distributions



 
Reconstructed scene is correlated 
with the original distribution of 
moving scatterers



 
Reconstruction quality is 
increasing with number of 
sensors (Ns

 

) and decreasing with 
scene complexity 
(number of point targets Np

 

)



 
Reliable reconstruction seems to 
be possible with 5 or more 
sensors



 
Statistical evaluation shows 
strong variation of reconstruction 
quality



 
Nearly no difference between 
results obtained with 9 or 12 
sensors
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OMP: Test Pattern



 
Generic test scene with 
10 moving targets



 
Arrow → Velocity



 
Color → Amplitude



 
Quality is increasing with 
number of sensors (Ns

 

)

OMP-Reconstruction with 5 Sensors

x-direction [cm]

y-
di

re
ct

io
n 

[c
m

]
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

 
Scene consists of N

 
pixels

 → N-dimensional solution space



 
Each inequality of the 1st

 

constraint 
divides solution space into two half-

 spaces



 
Together the inequalities define a 
polytope in the solution space



 
Goal:

 
find a corner of the polytope with 

the maximum cost function



 
the SIMPLEX algorithm moves along the 
edges until an improvement of the 
solution is not possible

SIMPLEX Algorithm

Source: Wikipedia
Starting point

Corner with maximum
 cost function

Cost Function 1st

 

constraint 2nd

 

constraint



Page 13 of 21

2nd International Workshop on Compressive Sensing applied to Radar

SIMPLEX: Random Distributions



 
Similar behavior compared to Matching Pursuit



 
Reconstruction quality is significantly better for complex scenes 
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SIMPLEX: Test Pattern

SIMPLEX-Reconstruction with 7 Sensors

y-
di

re
ct

io
n 

[c
m

]

x-direction [cm]

x-direction [cm]
y-

di
re

ct
io

n 
[c

m
]

SIMPLEX-Reconstruction with 3 Sensors

y-
di

re
ct

io
n 

[c
m

]

x-direction [cm]

SIMPLEX-Reconstruction with 5 Sensors

y-
di

re
ct

io
n 

[c
m

]

x-direction [cm]

SIMPLEX-Reconstruction with 12 Sensors



 
Generic test scene with 
10 moving targets



 
Arrow → Velocity



 
Color → Amplitude



 
Quality is increasing with 
number of sensors (Ns

 

)
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SIMPLEX: Complexity



 
The complexity and computing time of the SIMPLEX algorithm show 
exponential dependency on the number of constraints M

 
(in worst-case), 

simulation shows following behavior:



 
Number of iteration steps ~Np

2Ns



 
Average computing time ~Np

3Ns
2

SIMPLEX-Reconstruction

N
um

be
r o

f I
te

ra
tio

n 
S

te
ps

Number of Point Scatterers Number of Point Scatterers

SIMPLEX-Reconstruction

C
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g 
Ti

m
e 

(n
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m
al
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ed

)
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Nonlinear Convex Optimization



 
Simulation of noisy measurement data



 
Starting point: 



 
In case of noisy measurement data, a reconstruction error ε

 
can 

be allowed:



 
→ nonlinear optimization problem:



 
Reconstruction using linear methods (e.g. SIMPLEX) not possible



 
Express the optimization problem as differentiable steady function u(Sa

 

)



 
Optimize this function using e.g. the Gradient algorithm



 
Possible approach:

 
Log-Barrier algorithm



 
Initial solution can be found e.g. using Matching pursuit
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Log-Barrier Algorithm



 
each optimization problem of the type

 can also be expressed as

 
with



 
Logarithmic approximation of  L:



 
Steady target function:



 
Principle applied to present optimization problem:
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Nonlinear Convex Optimization



 
Simulation with SNR 
of 0, 10, 20 and 30dB



 
Reconstruction of noisy 
data is still possible!



 
Some small details may 
be lost

Convex Optimization (SNR = 30dB)
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Convex Optimization (SNR = 20dB)
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Convex Optimization (SNR = 0dB)
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Nonlinear Convex Optimization



 
Dynamics: 37dB –

 
63dB



 
→ very effective

 noise suppression



 
With decreasing SNR a 
“noise floor”

 
appears 

around the true targets



 
→ image dynamics is 
decreasing



 
possible explanation:

 the algorithm allows 
reconstruction errors, 
which are not restricted 
to “true”

 
targets

Convex Optimization (SNR = 0dB)
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Summary



 
motion parameters of complex moving scenes can be estimated using a 
network of incoherently operating radar sensors as well as CS-based 
signal processing techniques



 
Assumption:

 
the scene contains only a limited number of significant 

elements



 
A relatively small number of radar sensors is required (5 –

 
10)



 
Coherency between sensors is not necessary



 
Depending on the scenario, different reconstruction algorithms can be 
applied



 
For high SNR linear optimization (SIMPLEX) or greedy methods may

 
be 

used



 
In case of low SNR nonlinear optimization methods show better 
performance



 
Reconstruction is computationally heavy in terms of required memory 
and computing time, so real-time application is not possible (yet)
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Thank You!
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