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Introduction

_ 3D-Example
Many potential targets of radar based sensors %

contain a large number of independently
moving elements with parameters (x, y, v, v ;s

v
)

Conventional image reconstruction methods
fail, as no unambiguous solution exists

Observation: the most scenes can be
described as sparse (the number of strong
scatterers is relatively low)

— Collected radar data contain much less
information than is suggested by its
bandwidth

Possible solution: Compressive Sensing
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Simulated Geometry

B Generic 2-dimensional scene with N, radar
sensors located around the target

Scene contains N, moving point scatterers

S7
4
Each sensor transmits a series of N, pulses / v

with N, discrete frequency steps !

I

B — Set of measurement data contains :'
M = N,-N;-N; complex samples A

S61

B Assumptions: \

» no coherency between sensors AN

» velocities are nearly constant during
the measurement time

7’
7

2D-Scene

.,.--V
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Signal Model

B Position of n-th scatterer: p,(t) = po.,, + U.t
B Distance between n-th scatterer and m-th sensor: R, ,.(t) = o, — Pm + Unt|

B Linear approximation: (1) 2 [Fromn] + {Drmms Un)
MM ~ r,m,n —

Dr.m., n‘

= RU,m,n + ’Ur,m,-nt

C Measured Slgnal D'm,_n.(fa t) ~ An exp (_jQ’/TfTU,mm) exp (_jQWfd,m,n t)
B with propagation time: 7y,.,, = 2Ry.u./c0
| and Doppler frequency: fd_’-rn,_‘n ~ 2f’.rnv7°_,-7n_‘n/c{]

B Signal of the m-th sensor: D,,(f.1) ZDm A(f. 1)
n=1

B — Scatterers can be separated depending on their distances and radial
velocities relative to the sensor!
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Range-Velocity-Maps

B Calculation using 2-dimensional FFT

B RV-maps describe a moving scene from the
perspective of a particular sensor

M Scatterers are separated depending on their
ranges and radial velocities

Data contains no directional information

Side-lobes can be reduced by applying window

Range-Velocity—Map (Rectangular Window)
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Problem Formulation

B Measurement data of all sensors can
be written as a single Vector D:

M 2D Fourier transform as well as
filtering with Window functions can
be expressed as multiplication with
matrix W:

@ Inequality of Cauchy-Schwarz:

B Linear optimization problem:

B Introducing of reconstruction error E:

® Nonlinear optimization problem:

Dy 0N 1

D— Dy _ (Ijz 59 _$.9
Dn _q’:w | SN

vD = (Vd)S

(WD| < [UP[-|S] — D, <,8,
SLl — Iléill{||sa||1 . (I)asa 2 D(L1 Sa 2 O}

D,=®,5,+F
Spy = I%iﬂ{HSaHl B3 <% S, >0}
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Simulation Parameters

® Simulation of 100 randomly generated scenes with 1 — 30 moving point
scatterers and CS reconstruction based on data of 3 — 12 sensors

Statistical analysis of simulation results

Additional: Simulation and reconstruction of a test pattern

Evaluation of 3 algorithms: OMP, SIMPLEX, nonlinear convex
optimization

Parameter Value Description
fe 94 GHz Signal center frequency
B 5GHz Bandwidth
dT 1 ms Time between two pulses
Ny 48 Number of frequency steps
N, 30 Number of pulses
N, 3,5,7,9, 12 Number of sensors
N, 1-30 Number of point targets
N.. 900 Spatial discretization (30 x 30)
N, 577 Velocity discretization
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Orthogonal Matching Pursuit

M Iterative approach, belongs to the “greedy” algorithms

B Selection of one base function (column of sensing matrix) during each
iteration step and termination if no improvement is possible anymore

B Suboptimal method, but easy implementation

B Adoption to deal with positive-valued
measurement data and positive-valued

: . A)
sensing matrix: b
2l b
» original:  max|{r,b;)| mit i€ [1, V] :
» changed: max (r,b;) mit i€ [l, V] b N
: 1
D
>
(0,0) X
=
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OMP: Random Distributions

B Reconstructed scene is correlated
with the original distribution of
moving scatterers

B Reconstruction quality is
increasing with number of
sensors (V,) and decreasing with
scene complexity
(number of point targets V)

B Reliable reconstruction seems to
be possible with 5 or more
Sensors

W Statistical evaluation shows
strong variation of reconstruction
quality

® Nearly no difference between

Correlation Factor
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OMP: Test Pattern

o

o
S

o
o
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»

OMP-Reconstruction with 3 Sensors OMP-Reconstruction with 5 Sensors
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SIMPLEX Algorithm

Corner with maximum

S, —=maxy C-S5 : ¢.5<D | S >0 '
opt 2 { \ , =L, 0 zY } cost function
Cost Function 1st constraint i 2nd constraint

B Scene consists of N pixels
— N-dimensional solution space

B Each inequality of the 15t constraint
divides solution space into two half-
spaces

B Together the inequalities define a
polytope in the solution space

M Goal: find a corner of the polytope with
the maximum cost function

B the SIMPLEX algorithm moves along the . _
edges until an improvement of the Starting point
solution is not possible

\
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SIMPLEX: Random Distributions

B Similar behavior compared to Matching Pursuit

B Reconstruction quality is significantly better for complex scenes

Accuracy of Reconstruction (SIMPLEX)
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SIMPLEX: Test Pattern

SIMPLEX-Reconstruction with 3 Sensors SIMPLEX-Reconstruction with 5 Sensors
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SIMPLEX: Complexity

B The complexity and computing time of the SIMPLEX algorithm show
exponential dependency on the number of constraints M (in worst-case),

simulation shows following behavior:

» Number of iteration steps ~N N,

» Average computing time ~N N
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Nonlinear Convex Optimization

Simulation of noisy measurement data
Starting point: D, < ®,S5,

In case of noisy measurement data, a reconstruction error ¢ can
be allowed: D,=®,5, + F

— nonlinear optimization problem:
Sp=min {[|Su]1 + [ @aS, — Dull < 2% S, = 0)

Reconstruction using linear methods (e.g. SIMPLEX) not possible
Express the optimization problem as differentiable steady function u(S)
Optimize this function using e.qg. the Gradient algorithm

Possible approach: Log-Barrier algorithm

Initial solution can be found e.g. using Matching pursuit
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Log-Barrier Algorithm

m each optimization problem of the typ wo, = min{uo(x) : wi(x) <0, i€ [1, M]}
can also be expressed as

- M _ 0 u<0
rop = min o) + 3 Llui(r) p o with  Lw)=q
' i=1 |

o0
: : : . ~ 1
B Logarithmic approximation of L: L(u)=—-— log(—u.)
M M
B Steady target function: wu(x) = uo(z) + Z L(u;(x)) = up(x) — — Z log(—u;(

B Principle applied to present optimization problem:

N

N
! L
w(Sa) =D Sui— = | log (2 = a8, — Dall3) + > log(Sas)
T i—1

i=1
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Nonlinear Convex Optimization

B Simulation with SNR

y—direction [cm]

of 0, 10, 20 and 30dB

Reconstruction of noisy

data is still possible!

Some small details may

be lost
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Nonlinear Convex Optimization

Convex Optimization (SNR = 30dB) Convex Optimization (SNR = 20dB)

B Dynamics: 37dB - 63dB  «| 40|

30} -10 30- -10
— very effective oo A - w_ = A= 20
noise suppression s o A wy ¢ Ol ma g a0
. . é | —40%. _§ ial —40
With decreasing SNRa 1 ° ™ RN - -
“noise floor” appears a0 " . » a0 r - B

around the true targets «~. .7 el LT o

-40 -20 0 20 40 -40 -20 0 20 40

— image dynamics is

decreasing

possible explanation:

the algorithm allows
reconstruction errors,
which are not restricted

to “true” targets
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Summary

B motion parameters of complex moving scenes can be estimated using a
network of incoherently operating radar sensors as well as CS-based
signal processing techniques

B Assumption: the scene contains only a limited number of significant
elements

A relatively small number of radar sensors is required (5 — 10)
B Coherency between sensors is not necessary

B Depending on the scenario, different reconstruction algorithms can be
applied

B For high SNR linear optimization (SIMPLEX) or greedy methods may be
used

B In case of low SNR nonlinear optimization methods show better
performance

and computing time, so real-time application is not possible &kaunhofer
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