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Introduction



 
Many potential targets of radar based sensors 
contain a large number of independently 
moving elements with parameters (x1

 

, y1

 

, vx1

 

, vy1

 

, 
…)



 
Conventional image reconstruction methods 
fail, as no unambiguous solution exists



 
Observation:

 
the most scenes can be 

described as sparse (the number of strong 
scatterers is relatively low)



 
→ Collected radar data contain much less 
information than is suggested by its

 bandwidth



 
Possible solution:

 
Compressive Sensing

2D-Example

3D-Example
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Simulated Geometry



 
Generic 2-dimensional scene with Ns

 

radar 
sensors located around the target 



 
Scene contains Np

 

moving point scatterers



 
Each sensor transmits a series of Nt

 

pulses 
with Nf

 

discrete frequency steps



 
→ Set of measurement data contains

 complex samples



 
Assumptions:



 
no coherency between sensors



 
velocities are nearly constant during 
the measurement time

Generic Measurement Geometry
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Signal Model



 
Position of n-th

 
scatterer:



 
Distance between n-th

 
scatterer and m-th

 
sensor:



 
Linear approximation:



 
Measured signal:



 
with propagation time: 



 
and Doppler frequency:



 
Signal of the m-th

 
sensor:



 
→ Scatterers can be separated depending on their distances and radial 
velocities relative to the sensor!
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Range-Velocity-Maps



 
Calculation using 2-dimensional FFT



 
RV-maps describe a moving scene from the 
perspective of a particular sensor



 
Scatterers are separated depending on their 
ranges and radial velocities



 
Data contains no directional information



 
Side-lobes can be reduced by applying window 
functions (e.g. Hann window) to measurement 
data



 
Number of non-zero elements is significantly 
reduced → „Sparsity“



 
RV-maps are the basis for further (CS-based) 
image reconstruction steps
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Problem Formulation



 
Measurement data of all sensors can 
be written as a single Vector D:



 
2D Fourier transform as well as 
filtering with Window functions can 
be expressed as multiplication with 
matrix Ψ:



 
Inequality of Cauchy-Schwarz:



 
Linear optimization problem:



 
Introducing of reconstruction error E:



 
Nonlinear optimization problem:
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Simulation Parameters



 
Simulation of 100 randomly generated scenes with 1 –

 
30 moving point 

scatterers and CS reconstruction based on data of 3 –

 
12 sensors



 
Statistical analysis of simulation results



 
Additional:

 
Simulation and reconstruction of a test pattern



 
Evaluation of 3 algorithms: OMP, SIMPLEX, nonlinear convex 
optimization
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Orthogonal Matching Pursuit



 
Iterative approach, belongs to the “greedy”

 
algorithms



 
Selection of one base function (column of sensing matrix) during

 
each 

iteration step and termination if no improvement is possible anymore



 
Suboptimal method, but easy implementation



 
Adoption to deal with positive-valued

 measurement data and positive-valued

 sensing matrix:



 
original:



 
changed:
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OMP: Random Distributions



 
Reconstructed scene is correlated 
with the original distribution of 
moving scatterers



 
Reconstruction quality is 
increasing with number of 
sensors (Ns

 

) and decreasing with 
scene complexity 
(number of point targets Np

 

)



 
Reliable reconstruction seems to 
be possible with 5 or more 
sensors



 
Statistical evaluation shows 
strong variation of reconstruction 
quality



 
Nearly no difference between 
results obtained with 9 or 12 
sensors
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OMP: Test Pattern



 
Generic test scene with 
10 moving targets



 
Arrow → Velocity



 
Color → Amplitude



 
Quality is increasing with 
number of sensors (Ns

 

)

OMP-Reconstruction with 5 Sensors

x-direction [cm]
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Scene consists of N

 
pixels

 → N-dimensional solution space



 
Each inequality of the 1st

 

constraint 
divides solution space into two half-

 spaces



 
Together the inequalities define a 
polytope in the solution space



 
Goal:

 
find a corner of the polytope with 

the maximum cost function



 
the SIMPLEX algorithm moves along the 
edges until an improvement of the 
solution is not possible

SIMPLEX Algorithm

Source: Wikipedia
Starting point

Corner with maximum
 cost function

Cost Function 1st

 

constraint 2nd

 

constraint
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SIMPLEX: Random Distributions



 
Similar behavior compared to Matching Pursuit



 
Reconstruction quality is significantly better for complex scenes 
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SIMPLEX: Test Pattern

SIMPLEX-Reconstruction with 7 Sensors
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SIMPLEX-Reconstruction with 3 Sensors
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SIMPLEX-Reconstruction with 5 Sensors
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x-direction [cm]

SIMPLEX-Reconstruction with 12 Sensors



 
Generic test scene with 
10 moving targets



 
Arrow → Velocity



 
Color → Amplitude



 
Quality is increasing with 
number of sensors (Ns

 

)
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SIMPLEX: Complexity



 
The complexity and computing time of the SIMPLEX algorithm show 
exponential dependency on the number of constraints M

 
(in worst-case), 

simulation shows following behavior:



 
Number of iteration steps ~Np

2Ns



 
Average computing time ~Np

3Ns
2

SIMPLEX-Reconstruction
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Nonlinear Convex Optimization



 
Simulation of noisy measurement data



 
Starting point: 



 
In case of noisy measurement data, a reconstruction error ε

 
can 

be allowed:



 
→ nonlinear optimization problem:



 
Reconstruction using linear methods (e.g. SIMPLEX) not possible



 
Express the optimization problem as differentiable steady function u(Sa

 

)



 
Optimize this function using e.g. the Gradient algorithm



 
Possible approach:

 
Log-Barrier algorithm



 
Initial solution can be found e.g. using Matching pursuit
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Log-Barrier Algorithm



 
each optimization problem of the type

 can also be expressed as

 
with



 
Logarithmic approximation of  L:



 
Steady target function:



 
Principle applied to present optimization problem:
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Nonlinear Convex Optimization



 
Simulation with SNR 
of 0, 10, 20 and 30dB



 
Reconstruction of noisy 
data is still possible!



 
Some small details may 
be lost

Convex Optimization (SNR = 30dB)
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Nonlinear Convex Optimization



 
Dynamics: 37dB –

 
63dB



 
→ very effective

 noise suppression



 
With decreasing SNR a 
“noise floor”

 
appears 

around the true targets



 
→ image dynamics is 
decreasing



 
possible explanation:

 the algorithm allows 
reconstruction errors, 
which are not restricted 
to “true”

 
targets

Convex Optimization (SNR = 0dB)
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Summary



 
motion parameters of complex moving scenes can be estimated using a 
network of incoherently operating radar sensors as well as CS-based 
signal processing techniques



 
Assumption:

 
the scene contains only a limited number of significant 

elements



 
A relatively small number of radar sensors is required (5 –

 
10)



 
Coherency between sensors is not necessary



 
Depending on the scenario, different reconstruction algorithms can be 
applied



 
For high SNR linear optimization (SIMPLEX) or greedy methods may

 
be 

used



 
In case of low SNR nonlinear optimization methods show better 
performance



 
Reconstruction is computationally heavy in terms of required memory 
and computing time, so real-time application is not possible (yet)
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Thank You!
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