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Abstract — In this paper, a new application of the Compressed 

Sensing (CS) theory to the data transmission problem in oceano-

graphic large-scale monitoring missions is proposed. The amount 

of the data (temperature, salinity and so on) collected during this 

mission can be huge and the transmission process could become 

prohibitively expensive in terms of both battery consumption and 

monetary cost of the satellite link. A new CS-based algorithm is 

thus developed in order to attain a cost-preserving and energy-

efficient data transmission. Moreover, the performance of the 

proposed CS algorithm is investigated with various parameter 

settings (different sensing and representation matrices, classical 

1 and fast 0 minimization algorithms) using real oceanographic 

data. 

Keywords - Sea measurements, underwater vehicles, sampling 

methods, signal reconstruction, acoustic velocity. 

I. INTRODUCTION 

Compressive Sampling, also known as Compressed Sens-
ing (CS), is a novel sensing/sampling paradigm that goes 
against conventional wisdom in data acquisition [1]. CS theory 
asserts that one can recover certain signals and images from far 
fewer samples or measurements than traditional methods re-
quire. To make this possible, CS relies on two principles: 
sparsity, which pertains to the signals of interest, and incoher-
ence, which pertains to the sensing modality. 

In the last few years, CS theory has been successfully used 
in a wide variety of practical applications (see, for example, [2] 
and references therein). This paper concerns ocean sampling 
applications, involving autonomous underwater gliders to map 
physical properties of seawater. An underwater glider is essen-
tially an autonomous vehicle that profiles vertically by control-
ling its buoyancy and translating some of its vertical motion 
into horizontal motion by virtue of its wings. In oceanographic 
applications, the domain to be sampled is very large and multi-
ple gliders are required to speed up the gathering of the data 
and to have sufficient characterization to get a synoptic picture. 
In the literature, some recent papers ([3], [4], and [5]) apply the 
CS theory to this large-scale monitoring problem.  

In this paper, a different application of CS in the oceano-
graphic field is proposed. In all the data acquisition missions 
for gliders, in addition to the sampling problem, there is anoth-
er fundamental practical issue: the transmission of the collected 
data. As stated previously, the measured values of the ocean 
fields of interest (temperature, pressure, salinity and so on) are 

collected using a certain number of gliders. Generally a glider 
moves through a 3D space following a saw tooth shape trajec-
tory (see Fig. 1). The trajectory is composed of a certain num-
ber of dive/climb cycles in the interval between two surfacings 
of the glider. The data, collected during each dive or climb cy-
cle, are stored and finally transmitted during a surfacing of the 
glider. Since the data transmission process is an expensive pro-
cedure in terms of both battery consumption for the data up-
loading and monetary cost of the satellite link, and in order to 
minimize the time on surface to reduce the risk of collision 
with vessels, it would be useful to find an algorithm that is able 
to reconstruct the ocean field of interest using a small part of 
the acquired data. A possible solution is to use a CS based 
compression algorithm providing that the sparsity assumption 
is fulfilled by the ocean field at hand. More precisely, one 
could use the CS framework to select a certain number of line-
ar CS measurements of the acquired data to be transmitted to 
the receiver for the field reconstruction. The receiver could 
then reconstruct the original data by performing a sparse mini-
mization algorithm.  

In order to exploit CS techniques at the maximum extent, 
the signal of interest should be sampled by using CS hardware 
devices operating directly at sub-Nyquist rate [2]. This work is 
a preliminary investigation to assess the performance of CS re-
construction algorithms regardless of the physical implementa-
tion of the CS sampling process. The sampling is just simulated 
by applying the so-called CS measurement matrix to the data 
acquired at the Nyquist (or a greater) rate. The sampling matri-
ces (like the Gaussian one), that cannot be implemented as a 
physical CS device on board a glider due to kinematic con-
straints of the platform, are only taken as a reference to com-
pare the reconstruction performance with respect to different 
sampling matrices. The implementation of a CS device on 
board a glider is envisioned as part of a future research effort to 
transform the vehicle in a “CS platform” so as compressed 
measurements could directly be stored and transmitted to the 
receiver for signal reconstruction. 

The paper is organized as follow. In Section II, an overview 
of the CS theory is provided, in order to make the manuscript 
as self-contained as possible. In Section III, the proposed CS-
based transmission algorithm is described. Numerical results, 
relative to the proposed algorithm, are provided in Section IV. 
Our conclusions are finally collected in Section V. 



II. BRIEF OVERVIEW OF THE CS THEORY 

A. Representation basis and measurement model 

Let 
nf  be a discrete time signal and let 

n nΨ  be an 
orthonormal basis in which the signal f has a sparse representa-

tion. Suppose now that f=Ψx, where 
nx  is the coefficient 

vector. Formally, f admits an s-sparse representation through Ψ 
(the so-called representation basis), if its coefficient vector x 
has at most s non-zero elements. Given a set of vectors, 

1{ } ,m

k kφ  the CS measurements are collected by means of linear 

functionals of the signal f [6]: 

 , 1, ,T

k ky k m φ f . (1) 

The interest is in undersampled situations in which the 
number m of available CS measurements is much smaller than 
the dimension n of the signal f. Letting Φ denote the m×n sens-
ing matrix with the vector φ1,…,φm as rows, the process of re-

covering f from the measurement vector 
m y Φf  is, in 

general, ill-posed when m<n. However, if two fundamental re-
quirements are satisfied, i.e. the sparsity and the incoherence, it 
is possible to reconstruct the signal of interest with m n  CS 

measurements. The incoherence captures how dissimilar a pair 
of representation and sensing bases are. The idea is that local 
information in one basis will be spread out in the other basis. 
Incoherence is defined as [1]: 
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B. The reconstruction algorithm 

Given the CS measurement vector y and the knowledge that 
the signal f admits a sparse representation x, it is natural to at-
tempt to recover f=Ψx by solving the following optimization 
problem [7]: 

 
0

ˆ arg min s. t.
n

 
x

x x ΦΨx y  (3) 

where the 0-norm of a vector is defined as the cardinality of 

the support of the vector. The main problem of this approach is 

that the 0-norm is a discrete and non convex function and 

hence it is potentially very difficult to solve the optimization 
problem in eq. (3). A way to reformulate this problem into 

something more tractable is to replace the 0-norm with a cer-

tain non-negative and continuous function F, that is: 

  ˆ arg min s. t.
n

F


 
x

x x ΦΨx y . (4) 

The most important case is the 1-minimization (the Basis 

Pursuit problem) where 
1

( ) ii
F x x x . In fact, a key 

theorem of CS states that if the coefficient vector x of f is s-

sparse in the basis Ψ, then the reconstruction in 1-norm is ex-

act with high probability if m≥Cμ
2
(Φ,Ψ)slnn for some positive 

constant C [7]. Although the 1-minimization is a convex opti-

mization and can be solved efficiently, in some cases ([8], [9]) 
it can be suboptimal. In this paper, as well as the Basis Pursuit 

problem, a different approximation of the 0-norm, proposed in 

[10], is considered. 

C.  Robust CS and Restricted Isometry Property (RIP) 

In order to be really useful, CS needs to be able to deal 

with compressible signals, i.e. signals that have an exponential 

decay of the entries of the coefficient vector, but are not nec-

essary sparse. In the CS literature, some bounds on the loss in 

the reconstruction accuracy of a compressible signal are pro-

vided. However, all the results on the robust CS hold true if 

and only if another requirement on the sensing matrix Φ, in 

addition to the incoherency property, is satisfied. In particular, 

Φ must satisfy the so-called restricted isometry property (RIP) 

[11]. For the application discussed in this paper, it is sufficient 

to observe that sensing matrices satisfying the RIP can be 

sampled from two families of random matrices [12]: 

1) form Φ by sampling i.i.d. entries from the normal  dis-

tribution with zero mean and variance 1/m, 
2) form Φ by sampling i.i.d. entries from symmetric Ber-

noulli distributions.  

We note, in passing, that the identity matrix I does not sat-
isfy the RIP. 

III. CS AND DATA TRANSMISSION 

In this section, the proposed CS-based transmission algo-
rithm is described. In the application at hand, the signal f is 
represented by the data stored in the memory of the glider, 
while the CS measurement vector y represents the amount of 
data to be sent to the receiver. Then, in the processing center of 
the receiver, where processing power and battery consumption 
is not a problem, the original field data are reconstructed using 
the sparse minimization algorithm in eq. (4). It must be noted 
that the sensing matrix Φ, used in the glider to set the CS 
measurement vector y to be transmitted, has to be known to the 
receiver. This fact could be a problem if random sensing matri-
ces are used. A possible solution would be to exchange be-
tween the glider and the receiver the initial seed of the random 
number generator, instead of transmitting the full-size sensing 
matrix. At this point, an important consideration about the 
sampling strategy of the glider must be done. In order to avoid 
a continuous sampling of the seawater and the resulting storage 
of all the acquired data f, the previously-described CS trans-
mission scheme could also be implemented as a random sam-
pling strategy. While the glider transverses the water column 
on its undulating trajectory, it could directly create the meas-
urement vector y by merely collecting m samples at random 
locations, resulting in an additional energy saving. This ap-
proach is mathematically equivalent to the one discussed be-
fore, where the measurement matrix Φ is the identity matrix I. 
However, as discussed before, the identity matrix does not sat-
isfy the RIP property and this could lead to a performance deg-
radation of the reconstruction algorithm. This possibility is in-
vestigated in the next section.  

A. Data format, representation bases and evaluation metrics 

The matrix data structure 

The first question is: “Which is the best way to rearrange 

the collected data, in order to obtain the minimal information 

loss in the reconstruction phase?”  



As depicted in Fig. 1, the trajectory covered in each dive 

cycle is composed of a certain number of diving-climbing 

paths. During a typical dive cycle, the glider moves between 

two levels of depth, namely a and b. Given the strong correla-

tion between the data collected during two adjacent diving-

climbing paths, it would be useful to rearrange the data as a 

matrix obtained by interpolating the measured field values 

during each trajectory path in a regular depth grid of p points 

between a and b. More precisely, the i
th

 row of the data matrix 

will contain the interpolated field value collected by the glider 

during the i
th

 trajectory path. The main advantage of using a 

“data matrix” instead of a simpler “data vector” is in the pos-

sibility of using a 2D representation basis to fully exploit the 

strong correlation between the data collected during two adja-

cent diving-climbing paths and increase the sparsity of the rep-

resentation coefficient vector. For this reason, in all the simu-

lations, the collected data are always recast in a matrix struc-

ture.  

 
           Figure 1 - Saw tooth shape trajectory of a glider. 

 

To assess the performance of the proposed CS-based algo-

rithm, a real data set collected during the Recognized Envi-

ronmental Picture 2012 (REP12) campaign in the Mediterra-

nean Sea is used. The glider used in this mission sampled the 

water column between 16 and 170 meters of depth. In order to 

set up the data matrix, 16 climbing-diving paths are collected 

and the values of the fields are interpolated on a regular depth 

grid of 128 points. If no compression algorithm is used, the 

total amount of data to be transmitted is of 16×128 (=2048) 

samples. In Fig. 2, a temperature data matrix, obtained from 

the samples gathered by the glider, is shown. 

Representation bases 

In this study, two representation bases have been used: the 

2D Discrete Cosine Transform (DCT), that is strictly related to 

the Discrete Fourier Transform (DFT), and the 2D Wavelet 

Transform (WT), with the Duabechies 1, (db1 or Haar) wave-

let function [13].  

 

 
Figure 2 - Temperature data matrix. 

 

Performance metric 

The performance of the proposed algorithm have been 

evaluated in terms of mean value of the Root Mean Square 

Error (RMSE). More precisely, let n be the number of samples 

in the collected dataset f and let ˆ ˆf Ψx  be the reconstructed 

(or estimated) dataset. The RMSE(Φ) is defined as: 

 

    
2

1

1 ˆRMSE ( )
n

i i

in 

 Φ f f Φ . (5) 

The RMSE(Φ) in eq. (5) is a function of the particular real-
ization of the sensing matrix Φ. More precisely, RMSE(Φ) is 
itself a random variable whose mean value μ is given by 

{RMSE( )}.E  Φ  The mean value μ represents the recon-

struction RMSE, averaged over all the possible realizations of 
the measurement matrix Φ. The average RMSE will be evalu-
ated for different values of the compression ratio, i.e. the ratio 
between the number of transmitted CS measurement m and the 
total amount of samples n in the original data. 

 

IV. TEMPERATURE DATA ANALYSIS 

The ocean field considered in this paper is the temperature 

field. During the REP12 campaign, the data relative to other 

ocean fields, such as salinity and density, were also collected. 

For brevity, only the numerical results relative to the tempera-

ture field are reported here. It is easy to show, however, that 

similar results hold for the other ocean fields.  

A. RMSE of the reconstruction error for three different types 

of sensing matrices 

In this subsection, the impact of the sensing matrix on the 

performance of the proposed CS algorithm for data transmis-

sion is evaluated. 
The representation basis is a 2D-DCT basis and the three 

sensing matrices are the identity matrix, the Gaussian matrix, 
and the Generalized Bernoulli matrix, respectively. In this first 

case, the classical 1-minimization is used; the application of 

the fast 0-minimization is investigated later on. The perfor-

mance of the CS algorithm is assessed in terms of mean value 
of the RMSE, μ, as a function of the compression ratio.  



As shown in Fig. 3, all the three considered sensing matri-
ces guarantee similar reconstruction performance. In particular, 
using a compression ratio of 60%, the temperature field can be 
reconstructed with a RMSE of about 0.1°C. It can be noted 
that, even if the identity matrix does not satisfy the RIP, it 
guarantees the same performance as the Gaussian and the Gen-
eralized Bernoulli matrices. This fact allows one to use a ran-
dom sampling scheme of the sea column, providing that the 
2D-DCT representation basis is used, without performance 
loss.   
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Figure 3 - Mean value of the RMSE vs the compression ratio for different 

sensing matrices. 

 

B. DCT representation basis vs WT representation basis 

In the previous section, the performance of the reconstruc-

tion algorithm is assessed against different sensing matrices. 

However, the choice of the representation basis also plays a 

crucial role. Figs. 4 and 5 show the comparison between the 

performances obtained by using the two considered represen-

tation basis: the 2D-DCT and the 2D-WT with a db 1 wavelet. 

The results in Fig. 4 concern the use of a Gaussian sensing 

matrix, while the ones in Fig. 5 concern the use of the identity 

sensing matrix. Using a Gaussian sensing matrix and having to 

transmit a small number of compressed measurements, better 

performance can be achieved by using a DCT representation 

basis (μ in this case is between 0.2 C° and 0.1 C° for a com-

pression ratio between 20% and 40%). As the compression 

ratio increases, the WT basis provides better performance than 

the DCT basis. On the other hand, the WT basis is not suitable 

for an identity sensing matrix. In fact, as shown in Fig. 5, the 

reconstruction performance is very low. This means that, if a 

random sampling strategy is implemented, the 2D-WT cannot 

be used as representation basis. 

 

C. Classical 1 -minimization vs fast 0 -minimization 

In this subsection, the performances of the classical 1-

minimization and the fast 0-minimization, proposed in [14], 

are investigated. The comparison is performed by using a 

Gaussian sensing matrix and the two representation bases, i.e. 

the 2D-DCT and the 2D-WT.  
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Figure 4 - Mean value of the RMSE vs the compression ratio for different 

representation bases (Gaussian sensing matrix). 
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Figure 5 - Mean value of the RMSE vs the compression ratio for differ-

ent representation bases (identity sensing matrix). 

 

When the 2D-DCT is used, the performances of the two 

minimization algorithms are similar (see Fig. 6). On the other 

hand, by using the 2D-WT as representation basis, the 0-

minimization has much better performance than the classical 

1-minimization. Using a compression ratio of 50%, the 0-

minimization is able to reconstruct the original temperature 

data with an error of about 0.03 °C, while the 1-minimization 

has a reconstruction error of about 0.1°C (see Fig. 6).  

Moreover, the 0-minimization algorithm is much faster 

than the classical  1-minimization (i.e. less computational 

time). There is no clear theoretical justification for this sur-

prisingly good behavior of the algorithm based on 0-

minimization, which seems to be strongly data-dependent and 

non-general at all.  
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Figure 6 - Mean value of the RMSE vs the compression ratio for different 

minimization algorithms. 

 

V. CONCLUSIONS 

In this paper, an oceanographic application of the CS theo-

ry has been investigated: pre-processing prior to transmission 

of the measured data using a limited bandwidth satellite link 

and saving the battery energy. In particular, the possibility to 

transmit only a certain number of CS measurements, instead 

of all the collected data, and then to implement a reconstruc-

tion algorithm at the receiver was investigated. The aim of this 

investigation was to evaluate the minimum number of CS 

measurements of the ocean field of interest (for example the 

temperature), that needs to be transmitted in order to recon-

struct the field with a given accuracy. The performance of the 

proposed CS algorithm has been assessed in terms of mean 

value of the RMSE as function of the compression ratio (i.e. 

the ratio between the number of transmitted CS measurements 

and the total amount of data samples), for different sensing 

matrices (identity, Gaussian, and Bernoulli matrices), and for 

different representation bases (2D-DCT and 2D-WT). The 

performance and the processing time of the classical 1-

minimization algorithm have been compared with that of the 

0-minimization algorithm. The simulations have shown that 

the 0-minimization algorithm provides equal or even better 

performance than the 1-minimization algorithm. Moreover, 

the 0-minimization algorithm is much faster than the other 

algorithm. However, performance of the 0-minimization is 

quite surprising and needs to be further investigated from both 

a theoretical and practical point of view.  

Future works will explore the possibility to use other rep-

resentation bases, in order to improve the sparsity of the con-

sidered ocean fields and transmit a lower number of samples 

to achieve a given accuracy. Moreover, the robustness of the 

proposed CS transmission algorithm will be assessed using 

different datasets of measured ocean fields. 
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