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Outline 
• Main concepts of the Compressed Sensing theory: 

1. Sparsity and incoherence 
2. Signal recovery 
3. RIP property 

• Compressed data transmission: 

1. Motivations for a CS-based transmission scheme 
2. Temperature data 
3. Simulation results and performance description 
4. Ongoing works 
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The Compressed Sensing theory (1/3) 

Main statement: Certain signals or images can be recovered from far fewer 
samples or measurements than traditional methods use.  

To make it possible, CS relies on two principles: 

• Sparsity, which pertains to the signal of interest, 

• Incoherence, which pertains to the sensing modality. 

Sparsity 

Definition: A signal f is said to be s-sparse if it has at most s nonzero entries. 

Typically, one must deal with signals that are not themselves sparse, but which admit a sparse 

representation in some orthonormal basis Ψ. In other words, the coefficient vector x of f 

through the orthonormal basis Ψ is sparse: 
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The Compressed Sensing theory (2/3) 
The sensing problem 

Theoretical results show that if the signal admits a sparse representation in a given representation 

basis (such as the Fourier or the wavelet bases), then it is possible to reconstruct exactly the original 

signal from a very low number of linear and non-adaptive measurements.  

Measurement model 

•              : original finite-dimensional signal, 

•                      : representation (orthogonal) matrix, 

•                      : sampling or measurement matrix with 
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Incoherence  

Definition: The coherence between the sensing basis Φ and the representation basis Ψ is defined as: 
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The Compressed Sensing theory (3/3) 
Sparse signal recovery 

Given the measurement vector y and the knowledge that the signal f is sparse at least in some 

representation basis, it is natural to attempt to recover f by solving the following optimization problem: 
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However, the l0-norm is a discrete and non convex function and hence is potentially very difficult to solve 

this optimization problem (strictly speaking, the l0-norm is not a norm, not being positive homogeneous).  

Basis Pursuit (BP) 
Substitute the l0-norm with its continuous 
and convex approximation: the l1-norm. 
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Smoothed l0 algorithm* 
Substitute the l0-norm with some continuous 
but non-convex approximation. 
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*From: 
Mohimani, H.; Babaie-Zadeh, M.; Jutten, C.; "A Fast Approach for Overcomplete Sparse Decomposition Based on Smoothed   Norm," IEEE 
Transactions on Signal Processing, vol. 57, no. 1, pp. 289-301, Jan. 2009. 
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The Restricted isometry property 
Definition: A matrix A satisfies the restricted isometry property (RIP) of order c, if there exist a 

constant                  such that the following inequality chain holds true: 

 

 

It can be shown that that sensing matrices that satisfy the RIP can be sempled from two families of 

random matrices: 

1. Form Φ by sampling i.i.d. entries from the normal distribution with zero mean and variance 1/m: 

 

2.  Form Φ by sampling i.i.d. entries from symmetric Bernoulli distributions, e.g.: 

 

 

 

It must be noted that the identity matrix I does not satisfy the RIP. 
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Some application of CS for data acquisition (1/2)  
Remote sensing: Improvement of the imaging devices that use CCD (charge coupled device) array 

technology. A CS camera that collects incoherent measurements using a digital micromirror array 

requires just one photosensitive element instead of millions. 

 

 

 

 

• Compressed sensing of hyperspectral data: The application of CS to hyperspectral imaging has the 

potential for significantly reducing the sampling rate and hence the cost of the analog-to-digital 

sensors. Moreover, the dimension of the HS data cube could be significantly reduced. 

• SAR imaging: Basically, a SAR measurement can be viewed as a sample of the spatial Fourier 

transform of the scattering field of interest. The CS theory could be very useful to reconstruct the 

entire scene with a very low number of SAR measurements. 

One-pixel 
camera 
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Some application of CS for data acquisition (2/2)  

• Sonar and radar signal processing application: CS-based space-time adaptive processing (STAP) 

algorithms, radar imaging, waveform selection and so on.   

• Mission design for mobile robot using CS: Mobile robots are increasingly being used to survey and 

map spatial phenomena for large-scale environmental monitoring applications. In a lot of cases the 

domain to be sampled is very large, and the CS theory could provide a valuable tool to reduce the 

number of robots needed for the mission and to optimize the data  gathering. 

 

Application of our interest: Sampling and 

transmission of oceanographic data from 

autonomous underwater gliders to the control 

centre. 
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Compressed data transmission (1/2) 
In all the data acquisition missions, in addition to the sampling problem, there is another fundamental 

practical issue: the transmission of the collected data. 

Motivation: Since the data transmission process is an expansive procedure in terms of both battery 

consumption and monetary cost, an in order to minimize the time on surface, it could be useful to find an 

algorithm that is able to reconstruct the ocean field of interest using a small part of the acquired data.  

A possible approach: Use the CS framework to select a certain number of linear CS measurements of the 

acquired data to be transmitted to the receiver for the field reconstruction. The receiver could then 

reconstruct the original data by performing a sparse minimization algorithm (i.e. the Basis Pursuit). 

Important observation: In order to exploit CS techiques at the maximum extent, the signal of interest 

should be sampled by using CS hardware devices (e.g. the random demodulator) operating directly at a 

sub-Nyquist rate. This part is left to future works. 
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Compressed data transmission (2/2) 

Data acquisition 

The CS framework is used to select a 
certain number of linear CS 
measurements y of the data f, acquired 
by the glider, to be transmitted to the 
receiver for the field reconstruction. 

Data reconstruction 

In the processing center of the receiver, 
where processing power and battery 
consumption is not a problem, the 
original field data f are reconstructed 
using a sparse minimization algorithm. 
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Two possible approaches to arrange the compressed 
measurement vector 

First approach: Continuously 

sample the water, collect all the 

acquired data in a vector f and 

finally arrange the measurement 

vector y to be transmitted as:  

.y Φf

In this approach, it can be used all the possible 

sensing matrices (identity, Bernoulli and Gaussian 

matrices) since we have at our disposal all the 

data continuously acquired by the glider. 

Second approach: Randomly sample 

the water in order to directly 

construct the measurement vector y 

to be transmitted in the data 

acquisition phase. This approach is 

equal to the first one in which the identity matrix is 

used: 

• Generate at random m rows of an nxn identity 

matrix, 

• Collect in a vector y the m measurements relative to 

the non zero entries of the m rows, 

• Transmit the vector y for the CS field reconstruction. 

nx1 vector of all 
the collected data  

measurement 
matrix 

mx1 vector of the 
measurements to 
be transmitted  
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An example of collected data: the temperature 

Saw tooth 
trajectory of 
the glider 

1-dimensional signal of 
the temperature 
collected during a dive 
cycle of the glider 

ith diving-climbing 
path of the glider 

Because of the strong correlation between the data collected 

during two adjacent diving-climbing paths, it would be useful to 

rearrange the data as a matrix obtained interpolating the 

measured field values during the ith path in a regular depth grid of 

p points. More precisely, the ith row of the data matrix will contain 

the interpolated field value collected by the glider during the ith 

path. 
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Performance index 
The performance analysis is performed in terms of mean value and standard deviation of the RMSE with 

respect to the random measurement matrix of the RMSE. More precisely, let Nf the dimension of the 

signal f and let    be the estimated signal, we can define the root mean square of the reconstruction 

error, RMSE(Φ), as: 
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The RMSE(Φ)  is a function of the particular realization of the measurement matrix Φ. More 

precisely, RMSE(Φ) is itself a random variable whose mean value μ is defined as: 

 

The mean value μ represents the root mean square reconstruction error averaged over all the possible 

realization of the measurement matrix Φ. The average RMSE will be evaluated for different values of 

the compression ratio (CR) simply defined as: 

 m
CR

n


Number of transmitted CS measurements 

Total amount of samples in the original data 
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RMSE for three different types of sensing matrices 
• Representation matrix Ψ: 2D – Discrete Cosine Transform (DCT). 

• Sensing matrices Φ:  

•Identity matrix (that do not satisfy the RIP),  

•Gaussian and Bernoulli matrices (that satisfy the RIP). 

• Minimization: Basis Pursuit problem (constrained l1-norm minimization). 
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• With the 2D-DCT representation matrix, the identity matrix 

guarantees the same reconstruction performance as the 

Gaussian and Bernoulli matrices. 

• The random sampling scheme can be implemented without 

performance loss providing that the 2D-DCT represenation 

basis is used. 

• Using a compression ratio of 60%, the temperature field can 

be reconstructed with a RMSE of about 0.1oC. 
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RMSE for two representation matrices 

• With a Gaussian sensing matrix, the DCT works better than the WT for low CR values. As the CR 

increases, the WT outperforms the DCT basis. 

• The WT basis is not suitable for the Identity sensing matrix. 

• Then, if a random sampling strategy is implemented, the WT basis should not be used as 

representation basis. 
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• Representation matrices Ψ: 2D – DCT and 2D – WT with a db1 wavelet. 

• Sensing matrices Φ: Gaussian and Identity matrices. 



Slide 18 NATO UNCLASSIFIED CoSeRa 2013 – Bonn – 17-19 Sept. 2013 

Basis Pursuit vs smoothed l0-minimization 

• When the DCT is used, the performance of the two 

minimization algorithms are similar, 

• Using the WT, the smoothed l0-minimization has much 

better performance than the Basis Pursuit. 

• The smoothed l0-minimization has a low computatinal 

cost that the Basis Pursuit. 

• The better behaviour of the smoothed l0-minimization 

has been verified for all the available data, but not general 

statement can be drown from these results. 
0

0,1

0,2

0,3

0,4

0,5

0 20 40 60 80 100

DCT - Gauss - l
0

WT-db1 - Gauss - l
0

DCT- Gauss - l
1

WT-db1-Gauss-l
1

M
e

a
n
 o

f 
th

e
 R

M
S

E
 [

C
°]

Compression ratio (%)

• Representation matrix Ψ:  

• 2D – Discrete Cosine Transform (DCT), 

• 2D – Wavelet Transform (WT) with a db1 wavelet. 

• Sensing matrices Φ: Gaussian matrix. 
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Concluding remarks and ongoing work 
 Goals of the proposed CS application  

1. Pre-processing prior to transmission of the measured data using a limited bandwidth satellite link and 

saving the battery energy, 

2. The possibility to transmit only a certain number of CS measurements (instead of all the collected 

data), and then to implement a reconstruction algorithm at the receiver, was investigated. 

3. The performance of the proposed CS algorithm has been assessed in terms of RMSE vs compression 

ratio for different sensing matrices (Identity, Gaussian and Bernoulli matrices), for two representation 

bases (DCT and WT) and for two minimization algorithms (BP and smoothed l0-minimization). 

Main results  

1. The random sampling (i.e. sensing with the Identity matrix) of the sea column is an effective scheme 

when the DCT representation matrix is used, 

2. The smoothed l0-minimization provides equal or even better performance (in particular with the WT) 

than the Basis Pursuit. 
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Ongoing works (1/5) 
CS hardware devices for sub-Nyquist sampling 

Development of sampling devices that are able to directly gather data of the field of interest without 

the need of a post-processing with a random measurement matrix. 
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Processing Processing 

 Reconstruction 

m samples 

n samples 

Oceanic field of 
interest 

Processing without 

reconstruction 

Data transmission  

m < n  

Control centre  

Autonomous glider  
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Ongoing works (2/5) 
An example of a possible CS device: the random demodulator 

From: 
Tropp, J.A.; Laska, J.N.; Duarte, M.F.; Romberg, J.K.; Baraniuk, R.G., "Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals," 
Information Theory, IEEE Transactions on , vol.56, no.1, pp.520,544, Jan. 2010. 
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Ongoing works (3/5) 

Original signal: One temperature profile (2000 sample), 

Sampling device: random demodulator. 

RMSE of the reconstructed signal for 
different values of the compression ratio 

Example of the reconstructed profile using 
80 compressed measurements (CR=4%) 
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Ongoing works (4/5) 
Oceanic field reconstruction using a fleet of autonomous gliders 

All the gliders implement a random demodulator. Then, for each sampling instant, the following 

measurement equation holds:  
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Measurement noise 
Random demodulator 
measurement matrix 

Coefficient vector 
(sparse vector) 

Each component of 
the measurement 
vector represents 

the measure of the 
ith glider at the kth 
sampling instant. 

State space modeling (assumed constant or slow varying) 
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g
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k k k N kx x xx

• The coefficient vector of the field of interest can be estimated with a sparity-aware (centralized or 

decentralized) Kalman filter. 

• The trajectory of each glider of the fleet can be recursively set up in order to minimize the 

reconstruction error. 
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Ongoing works (5/5) 
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Thanks for your attention! 


