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Abstract—A new method, Compressive Re-Sampling (CRS), is 

introduced to reduce the effect of speckle noise, a granular noise 

inherent in all coherent imaging technologies. The new method is 

motivated by the successful applications of compressive sensing 

(CS) to image processing and wireless communications. While 

compressive sampling is focused on acquiring signals at reduced 

data rates or reduced acquisition time, the goal here is to provide 

a speckle noise reduction method while preserving the original 

resolution and enhancing the contrast for diagnostic medical 

imaging applications. Initial results show an average SNR 

improvement of 12 dB. 
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sampling; compressive re-sampling 

I.  INTRODUCTION  

The use of the L1 norm to implement sparseness constraints 
for signal recovery has been known for some time [1]. The 
sparseness constraint was shown to be sufficient to recover a 
Nth dimensional signal consisting of only K nonzero elements 
with only partial information regarding the measurements [1].  
The seminal papers by Donoho [2] and Candes [3] showed that 
the Nth dimensional signal can be recovered from significantly 
less than N measurements, on the order of log(N)*K 
measurements under the mild conditions of restricted isometry 
property (RIP). This observation created a great interest in 
compressive sampling techniques to lower the number of 
measurements needed to reconstruct a signal. 

 In this paper we introduce a new method we call 
Compressive Re-Sampling (CRS) [4-6]. The CRS method is 
used to reduce noise such as speckle noise by randomly 
selecting J  subsets of the signal samples with replacement to 
reconstruct J signal estimates which are then averaged to 
reduce the noise of the final estimate. The idea of resampling in 
CRS is similar to resampling in machine learning where a 
number weak classifiers are combined to form a strong 
classifier. In CRS a number M of noisy estimates are combined 
to form a noise reduced estimate. In this paper the simple DFT 
matrix is used to form the J noisy estimates of the sparse N 
dimensional signal and averaged to form a noise reduced 
estimate. The CRS method is shown to significantly increase 
the SNR of simulated and measured clinical ultrasound signals 

over reconstruction with complete information, i.e., the full N 
measured samples. 

The idea of re-sampling in CRS is similar to re-sampling in 
machine learning where a number of weak classifiers are 
combined to form a strong classifier. In CRS, a number J of 
noisy estimates are combined to form a noise reduced estimate.  

Medical ultrasonography is a valuable imaging technology 
for visualizing subcutaneous body structures for medical 
diagnostics. The ability to provide live imagery also makes this 
technology suitable for guiding interventional procedures such 
as biopsies and aspirations. Ultrasound imaging is non-
ionizing, non-invasive and more cost effective than many other 
medical imaging modalities.  

However, ultrasound imaging suffers from speckle noise, 
an inherent characteristic of all coherent imaging techniques 
due to the presence of sub-resolution scatterers. Speckle noise 
produces a reduction in contrast resolution which is responsible 
for the overall lower effective resolution of ultrasound 
compared to x-ray or MRI imaging. In the case of breast 
imaging, ultrasound speckle can mask small details such as low 
contrast tumors or microcalcifications, which may be an early 
indication of breast cancer. This limitation prevents ultrasound 
from displacing mammography as the gold standard for breast 
cancer screening. In conventional pulsed ultrasound imaging 
systems, de-noising techniques are used to minimize the effect 
of speckle noise. However, research shows that there is a 
tradeoff between the effectiveness of speckle reduction 
techniques and image resolution.  

The purpose of this study is to examine speckle reduction 
methods using the basic framework of compressive sampling in 
order to maintain the image resolution while reducing the 
effects of speckle noise in order to improve lesion detectability 
in the presence of speckle noise. This is particularly important 
for detecting microcalcifications in breast images which are 
typically obscured by speckle noise and are indicative of an 
early form of breast cancer known as ductal carcinoma in situ 
(DCIS). 

Recent research studies have explored the use of 
compressive sensing (CS) on ultrasound imaging [7-9]. In 
particular the principles of CS can be used to reduce the 
number of samples or data rates needed during acquisition 



which is important for real-time high resolution imaging 
modalities such as ultrasound. CS applied to the ultrasound RF 
signal exploits the signal’s narrowband properties in the 
frequency domain and uses the Fourier Transform as the 
sparsifying basis.  

II. PRIOR WORK 

Speckle reduction in ultrasound imaging as well as other 
coherent imaging technologies has been an active area of 
research for many years. Fully formed speckle (FFS) is 
characterized as multiplicative noise and is modeled as a 
Rayleigh random variable with a constant SNR of 1.92 dB. 
Speckle reduction methods for ultrasound imaging include 
compounding (averaging) methods and post-processing 
(filtering) techniques.   

A. Compounding Methods for Speckle Reduction 

Compounding techniques [10, 11] are based on acquiring 
several images of the same target and averaging the images to 
form a composite image with reduced speckle. Spatial 
compounding is based on averaging images from different scan 
directions while frequency compounding is based on averaging 
images acquired at different frequencies. These techniques may 
improve the SNR of the composite image and reduce the 
overall energy of the speckle noise but come at the expense of 
lower overall image resolution due to the averaging process. 
Compounding methods also come at the expense of additional 
hardware complexity and expense. 

B. Post-Processing Methods for Speckle Reduction 

Post-processing methods for speckle noise reduction are 
based on applying signal processing software algorithms to the 
acquired ultrasound image data. Filtering techniques that have 
been examined for speckle reduction include mean filters, 
median filters, Kaun and Lee filters, Frost filters and diffusion 
filters [12-16]. The goal of filtering techniques is to remove the 
speckle noise, improve overall SNR while preserving the fine 
details in the image that are critical for accurate detection and 
classification of lesions. Kaun and Lee filters, the Frost filter 
and other techniques are based on finding heuristic rules to 
optimize the balance between low pass filtering or averaging in 
the homogeneous areas of the image and all pass filtering or 
preserving the signal in the areas that are determined to contain 
edges and point features in the breast tissue. Diffusion and 
median filtering are non-linear filtering techniques designed to 
preserve and enhance edge information while smoothing out or 
suppressing the granularity of speckle noise, providing an 
overall perceptually better quality image.  

Multi-scale approaches [16] have also been explored for 
reducing speckle noise in pulse-echo ultrasound systems. 
Wavelet-transform based multi-scale approaches are based on 
thresholding methods to reduce the noise components in the 
original image [16]. 

However, all filtering methods, whether single-scale or 
multi-scale, have an inherent tradeoff between smoothing out 
or suppressing speckle noise and preserving high frequency 
details that are critical for accurate detection and diagnosis of 
suspicious areas. 

III. COMPRESSIVE RE-SAMPLING (CRS)  FOR SPECKLE 

NOISE REDUCTION 

The algorithm presented here for speckle noise reduction 
overcomes the limitation of loss in resolution while decreasing 
speckle noise by using an average of reconstructed noncoherent 
images, each of which is formed using a random subset of 
frequencies that are sampled over an entire bandwidth of an 
image [4-6].  The use of the full bandwidth maintains the 
resolution in the time/space domain. The random thinning of 
the Fourier components for each estimate provides estimates 
that are uncorrelated in terms of speckle, and can be averaged 
to lower the speckle seen in the compound image. This 
approach can be compared to frequency or spatial 
compounding methods used in the front-end of many high-end 
ultrasound devices which produce multiple views that are 
averaged to reduce the effects of speckle noise. The original 
frequency compounding technique produces estimates of the 
signal based on small non-overlapping frequency bands and 
these much smaller bandwidths significantly impact the 
resolution of the resulting image, resulting in a loss of fine 
details and tissue structure that is useful for accurate diagnosis. 

Unlike CS techniques applied to the ultrasound RF signal 
for data acquisition, here we look at the dual problem. The 
reconstructed ultrasound image (B-Scan or A-Scan) assumes 
the sparseness constraint and the Inverse Discrete Fourier 
Transform (IDFT) forms the sparsifying basis. The technique 
introduced here takes advantage of the sparseness of the 
ultrasound image in the time domain in order to produce 
estimates of the signal based on subsampling the frequency 
components with substitution over the entire original 
bandwidth. J estimates of the signal based on keeping M 
random frequency components are combined noncoherently in 
the time (space) domain in order to produce an estimate of the 
image that greatly reduces the effect of speckle noise while 
preserving the original tissue details and structure.  Because the 
technique does not depend on separating the signal into 
nonoverlapping small frequency bands, J can be much larger 
than typical frequency or spatial compounding techniques 
reducing the noise more effectively due to the large number of 
estimates that are combined for the final image. 

Let x(t) be the time domain ultrasound signal and the 
discrete Fourier Transform of x(t) is denoted as X(w). Random 
binary masks of length N are produced where the number of 
1’s in any sequence is equal to M and the number of 0’s is 
equal to N-M where M << N. These binary masks are 
expressed as B

j 
where 

B
1 
= [1, 0, 1… B(N)

1
] 

B
2 
= [0, 0, 0… B(N)

2
] 

…                                   (2) 

B
J 
= [1, 1, 0… B(N)

J
] 

Estimates of the signal are generated by multiplying the J 
masks with the complex Fourier components and keeping J sets 
of  M components chosen randomly, that is 

X(w)
j 
= X(w) * B

j
                            (3) 

producing J estimates of the signal, 



X(w)
1
 = [X(1), 0, X(3) … X(N)*B(N)

1
] 

                 X(w)
2 
= [0, 0, 0, … X(N)*B(N)

2
] 

…                                             (4) 

 X(w)
J
 = [X(1), X(2), 0, … X(N)*B(N)

J
] 

The inverse DFT or FFT of the J re-sampled estimates is 
calculated and the analytic signal is used to noncoherently 
combine the estimates in the time (or spatial) domain, i.e.: 

x(t)
j 
= x(t)

j 
+ j (x’(t)

j
)                           (5) 

where x’(t) denotes the Hilbert transform of x(t). The J 
estimates are combined by taking the average of the magnitude 
at each time t or pixel location. The magnitude is given by 

xmag(t)
j 
= ((x(t)

j
)
2 
+ (x’(t)

j
)
2
)
1/2

                       (6) 

and the final estimate of the noise reduced signal is expressed 
as 

xmag(t) = 1/J  Σj xmag(t)
j
.                          (7) 

IV. RESULTS ON CLINICAL DATA 

The CRS algorithms were applied to simulated A-Scans 
with varying amounts of speckle noise and the improvement in 
SNR is shown in Fig. 1. On average, the SNR improvement on 
simulated data with varying degrees of speckle noise is 12 dB. 
Fig. 2 and 3 correspond to A-Scans of breast tissue that were 
collected on a Siemens Acuson S2000 device by trained 
radiologists. The CRS method significantly reduces the 
variance of the speckle noise while preserving small details 
and structures that appear as peaks in the post processed 
signal. B-Scan improvements on clinical data are illustrated in 
Fig. 4-6. We apply the CRS method described here as well as 
the CRS framework to estimate magnitude and phase statistics 
[5-6] which are combined to produce the results shown in Fig. 
4-6. The B-scans were collected by highly trained radiologists 
using the Siemens Acuson S2000 high-end cart-based 
ultrasound system. All parameters were optimized by 
radiologists for viewing and diagnosis including a spatial 
compounding feature and a speckle reduction feature. The 
images are of breast lesions assessed by radiologists as BI-
RADS® 4 (suspicious abnormality) or BI-RADS® 5 (highly 
suggestive of malignancy) after a screening mammogram and 
diagnostic ultrasound and recommended for biopsy. Fig. 4 
corresponds to a lesion where the radiologist recorded 
microcalcification findings on the mammogram but not on the 
original ultrasound. The biopsy for this lesion was found to be 
positive for malignancy. The image processed with the CRS 
method shows clearer lesion boundaries (dark area upper left 
quadrant), clearer tissue structure and small white specks that 
appear to be microcalcifications. Fig. 5 shows a highly 
irregularly shaped mass in the lower left quadrant and the CRS 
method provides an image where the tissue structure and 
lesion details are enhanced to assist in a more accurate 
diagnosis. Fig. 6 shows a lesion in the upper central portion of 
the image and the CRS method enhances the lesion 
characteristics, tissue structure and small details such as 
microcalcifications. A larger clinical trial is planned in order 

to collect clinical data to support improved diagnostic 
accuracy and visibility of microcalcifications.  

 

 

 

Figure 1.  SNR Improvement Plot. The average SNR improvement on 

simulated data is 12 dB. 

 

Figure 2.  Clinical Breast Ultrasound A-Scan (top) and speckle reduced A-

Scan (bottom) using the CRS Method 

 

Figure 3.  Clinical Breast Ultrasound A-Scan (top) and speckle reduced A-

Scan (bottom) using the CRS Method  



 

Figure 4.  Original B-Scan optimized by radiologist (left) and Processed B-

Scan using the CRS Method (right) 

 

Figure 5.  Original B-Scan optimized by radiologist (left) and Processed B-

Scan using the CRS Method (right) 

 

Figure 6.  Original B-Scan optimized by radiologist (left) and Processed B-

Scan using the CRS Method (right) 
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