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Abstract—To solve the low efficiency of traditional synthetic 

aperture sonar (SAS) imaging problem, a sonar imaging system 

combining compressed sensing (CS) and template compressed 

sensing (TCS) was proposed. The system used sonar network to 

image scenes. With 10% amount of traditional SAS data, CS and 

TCS algorithms could recover the image exploiting the 

structured sparsity of the interested scene with the same 

resolution. TCS method even recovered the image perfectly. 

Simulations shows the good performance. 
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I.  INTRODUCTION  

Synthetic aperture sonar (SAS) techniques have been 
applied widely in sonar imaging applications. According to the 
techniques, high range resolution is obtained by transmitting 
wideband signals, and high azimuth or along-track resolution is 
gained by coherent integrated echoes from different lines of 
sight (LOS). Nevertheless, as the pulse repetition interval (PRI) 
between pings is long due to the low velocity of sound, to 
obtain a high azimuth resolution image is time-consuming. 
Meanwhile, the range cell motion compensation (RCMC) 
process is mathematically complex due to the short wavelength 
and the uncertain relative motion during the long PRI. 
Conventionally, an along-track deployed array of hydrophones 
are used to lower the PRI equivalently [1], and a number of 
algorithms are proposed based on the approach [2]. Further, 
multistatic sonar network is proposed for a more varied 
arrangement of hydrophones. 

Compressed sensing (CS) [3] has been applied as a tool to 
recover signals from fewer samples. It exploits the sparsity of a 
signal, stating if the sampling scheme of the signal meets 
certain requirements, the signal can be recovered exactly [3]. 

The first attempt combining radar imaging and CS dates 
back to 2007. The authors managed to omit the matched filter 
part in traditional radar [4]. Paper [5] introduced a method to 
random sample the echoes and reconstruct the imaging scene. 
Paper [6] concluded the use of CS in radar imaging. On the 
other hand, the treatise on CS sonar imaging is very limited. In 
SAS applications, the number of echoes is small compared to 

that of radar in the same period. Meanwhile, SAS often 
observes targets floating in the water rather than the seabed, so 
the image scene shows better sparsity. Furthermore, the 
nonzero entries are cluttered in the centre and present a 
structured sparsity. These characteristics imply that a more 
targeted approach may be utilized in sonar imaging. 

In this paper, a novel sonar imaging method is proposed. 
The method exploits the structured sparsity feature of the 
interested scene, uses template compressed sensing (TCS) 
method, images the scene with far few echoes from random 
angles, and still gets high resolution. 

II. MODELLING OF CS SONAR IMAGING 

Consider a wideband sonar network with one transducer 
and m multistatic hydrophones. This is often the case of 

detecting targets in a sea area with a sonar network system. The 
sonar transducer transmits wideband signals. The echoes 
encode backscatter signals from a target and are received by 
those hydrophones as Fig. 1a shows. With only one ping, 
m echoes will be received. The high resolution range profile 

(HRRP) of the target can be achieved using matched filter. In a 
far field plane wave assumption, the HRRP could be 
interpreted as the projection of the backscatter power of the 
target along direction perpendicular to the line between the 
transducer and the hydrophone. Or the process is equivalent to 
m  monostatic sonars working simultaneously (see Fig. 1b). 

a                                                          b 

Figure 1.  System structure and working principle 

a   System structure 
  b   The equivalent monostatic sonar and its HRRP 
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It should be noted that the length of the HRRP hints the 
distribution of the scatters along the signal transmitting 
direction. In Fig. 1b, the resolution of the HRRP is determined 
by the matched filter.  

The target along with the background is first divided into 
squares with each square representing a scatter point of the 
scene. The size of the squares is set as the resolution of the 

HRRP. Thus a target matrix 
n n

X  is obtained. The size of the 

matrix n depends on the largest length of the HRRPs.  If we 

vectorize X along the  column direction  to  form vector 1n n 
x , 

then each echo could be considered as a linear projection of x , 

denoted as y  whose size is also 1n . A  is denoted as the 

projection matrix of size 2
m n which is composed of zeros 

and ones. For traditional SAS, y  is coherent integrated 

according to the Doppler information. As most of the time, the 
matrix X to be recovered is sparse, i.e. most of its entries are 
zero, except those corresponding to the scatters on the target. 
We present a CS method to solve the problem. 

With  m m n echoes received, a list of formulas are 

obtained,  
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(1) can be rewritten as  

 . x 

CS theory states that if x is sparse, and   is 

small, x could be recovered via a 1 norm minimization 

problem. And   is defined as the largest off-diagonal entry 

of the normalized Gram matrix of . Numbers of tests 

indicate that if the hydrophones are distributed so that the 

echoes are not strongly correlated, the formed  meet the 

requirement. 

1
min x 

. . .s t  x 

III. TCS MODEL OF CS SONAR IMAGING 

CS exploit the sparsity of the image. However we can see 
that the scatters are distributed mostly in the centre of the 
image, the distribution of the scatters can be also estimated 
from the length of the echoes.  These structures could be used 
as a priori for image recovery.  

Generally, a priori will be added as a regularization to 
restrict the result. We propose a template CS method to exploit 
this a priori instead of regularization. Equation (3) is rewritten 
as  

 
1

min vec W X  

 . . .s t  x   

in which W is the template matrix,  represent Hadamard 

product, and  vec  is the reshaping operator to vectorize a 

matrix along its column direction .  vec  is set according to the 

distance between the entry and matrix centre, and the length of 
each echo. W is termed as a template due to its representation 

of the a priori. By exploiting more prior information, the 
observed echo number can be reduced further than traditional 
CS method. 

IV. NUMERICAL RESULTS 

In this part, a comparison of traditional SAS imaging 
method, CS and TCS methods will be made.  

Suppose an interested target is 700m away from the sonar 
and the size of the target is unknown, but less 
than100m 100m  according to HRRP. 8 hydrophones form an 

arc with the centre of the arc colocating with the target and the 
radius of the arc being 700m. The hydrophones are about 250m 
away from each other.  A comparison of traditional SAS, CS 
and TCS methods are made with linear frequency modulated 
(LFM) signal.  

Figure 2.  Simulation result 

    a   The target and the background to be imaged 

     b   Imaging result via back projection algorithm 

c   Imaging result via CS method  

d   Imaging result via TCS method 



Fig. 2 shows the result. The target is shown in Fig. 2a, 
adopting traditional SAS method (here back projection 
algorithm is used) result is show in Fig. 2b, result of CS 
method is shown in Fig. 2c, and in Fig. 2d TCS method 
recovers the scene perfectly. Traditional SAS method fails in 
recovering the scene, because the number of coherent 
integrated echoes is too small. Theoretically 82 echoes are 
needed for the reconstruction of the image in a small angle 
extent. And compared to the theoretical number, the data is no 
more than 10% of traditional SAS method when resolution is 
the same. 

V. CONCLUSION 

This paper proposes a sonar imaging system exploiting 
sonar network. With only one ping information, the image 
scene can be recovered using CS and TCS methods. These 
methods exploit a priori of the imaging scene sufficiently. By 
using no more than 10% data amount of the traditional SAS, 
the recovery can be perfect.  
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