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Abstract—The paper presents a study of Compressed Sensing
application in a passive radar, where the range resolution is
limited by the bandwidth of signal used. The application of Com-
pressed Sensing allows to obtain superresolution in a presence
of a point target, which is useful e.g. when exploiting multipath
information for estimating the target elevation. However, in such
setup, Compressed Sensing algorithms tend to fail. This paper
aims to study the applicability of different algorithms and to
propose some modifications that improve their performance.

I. INTRODUCTION

Compressed Sensing paradigm was primarily conceived in
connection to image processing. There exist many examples
of successful application of Compressed Sensing in optical [1]
or medical [3]image reconstruction.

Typical radar problems are significantly different from the
examples cited above. First, the basis (or frame) elements
are usually complex functions, and coefficients in sparse
decompositions are also complex, as well as the measured
samples. This makes some adjustments in algorithms neces-
sary, as typically algorithms were devised with real-valued data
and coefficients in mind. An example may be AMP and its
complex modification under name of CAMP [4].

A second difference lies in different structure of radar signal
and different setups in typical problems. Also, unknown (and
not well-bounded) amplitude of the signal and noise can be a
source of errors.

Very specific problems arise when Compressed Sensing is
used to enable superresolution in radar, i.e. recovery of very
small relative delays. The measurement matrix in this case
may exhibit high coherence, which causes failures of some
algorithms, however one can still recover the delay values with
a brute-force algorithm.

In the following, the performance of several known algo-
rithms will be studied with respect to the application in a
passive (PCL) radar with superresolution in range.

The authors will show how different Compressed Sensing
algorithms perform in such “superresolution” setup. From
authors’ research it is clear that the majority of errors is due
to selecting wrong support subset and amplifying the wrong
way in subsequent iterations. Thus, a method for encouraging
the way out by modification of selected algorithms will be
proposed.
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Fig. 1. Schematic PCL radar setup

II. RANGE SUPERRESOLUTION IN PCL RADAR

A passive (PCL) radar detects objects using signals from
non-cooperative transmitters already present in the environ-
ment (so called “illuminators of opportunity”). Typically,
transmitters such as radio or TV broadcasting, GSM Base
Station or WiFi/WiMax are used. As the illuminating signal is
not known a’priori, the detection is done by cross-correlating
the signal gathered from observing scene (surveillance signal)
with the signal obtained from antenna facing the illuminator
(reference signal). The time delay between these signals for
a single detection determines the ellipsoid on which target is
present.

A typical PCL radar working with FM or DVB-T signal has
very good Doppler frequency resolution due to long integration
time. However, the range resolution cell size is limited by the
signal bandwidth to >1 km for FM and 40 m for DVB-T.
With sufficient signal-to-noise ratio and sparsity assumption
the resolution may be improved. This can be, for example,
employed to distinguish straight path echo and ground bounce
echoes in a problem of elevation estimation [2].

A specific characteristics of the superresolution problem in
PCL is that the dictionary consists of shifted copies of the
same signal, which results in very high coherence when the
shift granularity is fine. On the other side, in the ground bounce
problem the sparsity value is very low — in [2] it is shown that
typically K = 2 may be assumed.
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Fig. 2. Failures with BP algorithm [2]
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Fig. 3. Scatterplot of failures with MP algorithm [2]

III. PROBLEMS WITH COMPRESSED SENSING
ALGORITHMS

Compressed Sensing algorithms, when applied to a problem
which poses some challenge, tend to exhibit unwanted failure
modes. These modes include:

e converging to a non-sparse solution, similar to classical
LS one (this usually happens with BP with a challenging
problem or simply with a wrong choice of Lagrangian
parameter ),

o wrong identification of sparse support (preferring too
many atoms with large amplitude or sticking to a solution
represented by a single strong atom — this frequently
happens with MP in a superresolution setup).

An example of BP algorithm failure with superresolution

problem is shown in Figure 2.

An example of MP algorithm failure when two echoes are
too close is shown in Figure 3. The result of the algorithm is
then one echo, approximately located in the middle between
actual positions.

IV. ALGORITHM EVALUATION

In this section, two popular algorithms will be evaluated,
namely Basis Pursuit solved with linear programming methods
[8] and Matching Pursuit [5]. In an effort to investigate the
importance of coherence value, different dictionary granulari-
ties in spatial domain were used; the finer the granularity, the
stronger is the correlation between atoms.
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Fig. 4. Scatterplot of MP algorithm results for coarse dictionary
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g. 5. Scatterplot of MP algorithm results for fine dictionary

The figures shown present the numerical experiment results
in a form of scatterplot. The signal from a set of reflecting
points in a DVB-T based passive radar is simulated, and it is
then processed with use of the chosen algorithm.

The horizontal axis is the actual distance between reflectors,
and the vertical axis shows the recovered position of a reflector.
In the ideal case, the recovered position should be exactly on
the black lines.

The BP algorithm appears very sensitive to the dictionary
granularity (and to the resulting coherence). The MP algorithm
is insensitive to granularity, however it fails (with a typical
failure mode) when the echoes are closer to each other than
approximately two range cells.

V. RoCoSAMP

A new algorithm called CoSaMP appeared in [6], which
tries to combine ideas of Orthogonal Matching Pursuit with
thresholding. Instead of using a predefined threshold, this
algorithm selects the elements to be left in the solution vector
as K largest elements of the intermediate solution. It means
that an assumption has to be made about the expected sparsity
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Fig. 6. Scatterplot of BP algorithm results for coarse dictionary
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Fig. 7. Scatterplot of BP algorithm results for fine dictionary

of the solution, but in return a K -sparse solution is sought from
the first iteration, which accelerates the process.

It should be noted that an assumption of a too large K does
not ruin completely the result [7], as is a frequent case with
parametric methods (e.g. MUSIC); thus, selecting K value just
sets an upper limit on the solution sparsity.

In the CoSaMP algorithm, the main idea is to widen the
selected support .J¢ for the LS operation to (1+a)K elements,
where K of them come from the previous iteration and oK
from analyzing the residue rj, and then narrow it again by
pruning back to K elements for the residue update. Most
frequently a value of o = 2 is used, it is tunable; a larger
value of o encourages exiting from local optima.

However, the CoSaMP algorithm applied to a superresolu-
tion problem often fails due to coherence (1) of P matrix being
close to unity; this is mainly due to usage of Least Squares
minimization. If the support is chosen incorrectly (ex. rather
than two points, one point in the middle is chosen), CoSaMP
tends to stop in local minimum and is unable to recover the
delays. In other cases it tends to grow result magnitudes to
very large values.

The idea to create more robust version of CoSaMP, called

here RoCoSaMP, came from following facts:

1) In radar case of separating close echoes, the high coher-
ence of dictionary is due to high correlation of adjacent
atoms,

2) the exhaustive search algorithm is the most robust one,
however it induces unbearable computational complexity
with searching of large expected support,

3) usually, very small number of strong scatterers is ex-
pected (K < 3).

In RoCoSaMP algorithm, two important changes are made.
First, the LS minimization is substituted with more exhaustive
(but also more accurate) basic [y search algorithm on truncated
support. Second, the truncation of the support is similar to
the original CoSaMP - the a K largest scalar product atoms
are taken and their support (J%) is added to the support from
previous iteration. However, differently from original CoSaMP,
the support is additionally extended by widening the previous
estimated support (I*~1) by 2 3 adjacent elements. It must be
noted that this requires the “adjacency” to be defined, which is
not a general assumption in Compressed Sensing . However,
in the superresolution setup in one dimension this relation is
obvious.

In the experiments presented in this paper, the values of
a =1 and § = 2 were assumed.
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Fig. 8. RoCoSaMP algorithm

A schematic diagram of RoCoSaMP algorithm is shown in
Figure 8. The L) (z) symbol denotes an operator selecting &k
largest elements of vector x and zeroing the rest. Subscripts
+1 and —1 indicate extension of the index set to the right and
left respectively.

Results of evaluating RoCoSaMP in the same setup as in
Section IV are shown in Figure 9 and Figure 10. Typically,
few erroneous results may be seen, but the majority is correct,
and the rate of failures does not depend significantly on the
dictionary granularity.

The execution time of RoCoSaMP is plotted in Figure 11
in comparison to a full exhaustive search algorithm. The
search algorithm has a deterministic run time, and RoCoSaMP
was stopped at the moment when the residual power fails to
diminish. With RoCoSaMP, three setups have been tested:

o with 3 actual echoes and 3 echoes assumed in the
algorithm (RoCoSaMP (3))
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Fig. 9. Scatterplot of RoCoSaMP algorithm results for coarse dictionary
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Fig. 10. Scatterplot of RoCoSaMP algorithm results for fine dictionary

e with 2 actual echoes and 2 echoes assumed in the
algorithm (RoCoSaMP (2))

e with 2 actual echoes and 3 echoes assumed in the
algorithm (RoCoSaMP (2+1))

As the sparsity value in the experiment is low, the search
algorithm (run for K = 3) is faster with very coarse dictionary.
However, when the dictionary gets finer, the search algorithm
complexity grows, but RoCoSaMP run time is almost constant,
as it performs the search only on a set with size not depending
on the dictionary granularity.

VI. CONCLUSIONS

The superresolution setup in PCL radar poses a significant
challenge for Compressed Sensing algorithms. However, as the
algorithm failure is usually caused by wrong support guess,
modifications may be made to encourage better search for
correct support. One such modification has been proposed and
the experiments show that it improves the correct resolution
rate.

In the considered setup there are two problems to be solved
before actual application. First, run times achieved are still too
large — this may be solved with better algorithms or with new
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Fig. 11. Execution time of RoCoSaMP and full search (Solve) with respect
to the dictionary granularity

processing hardware. Second, the solutions are sensitive to
noise, which means that the superresolution may be achieved
only with signals strong enough.
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