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Compressive Sensing (CS)

e Integrates linear acquisition with dimensionality reduction
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[Candés, Romberg, Tao; Donoho 2006]




Radar: The Basics (1-D)

e Transmit low-autocorrelation signal f(¢), (e.g., Alltop seq.),
receive reflection from point source at range = and speed v

r(t) = Spo f(t — Ty)e? ™07

e Range and velocity (z,v) of the target can be inferred from
time delay-doppler shift (7z,ws)



CS Radar: The Basics (1-D)

e Time-domain sampling (/V:), N-1
discretization of observable
ranges (/N;) and velocities (V,) AN
(parameter space sampling) e S AN
provides an easy-to-implement 1 41 NREY
Gabor frame as a sparsity “ A
dictionary for observations: NRSPa
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— D;: Diagonal matrix w/samples of f, shifted by ¢
- Wy, : Modulation matrix with entries
Wi, [p, q] = 72PN
e Each sparsity dictionary element
(shift/modulation) linked to
delay-Doppler pair value ‘

[Herman and Strohmer 2009]




CS Radar: The Basics (1-D)

Observations from multiple point
sources are aggregated by the
transmission media, providing
sampled measurements r = Us

CS measurements: y = &r = dUs

Recover vector s, “read” out delay-
Doppler map

Vector s is sparse only in the case
when the target’s delay/doppler

is among values sampled in the
Gabor frame
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Parametric Dictionaries for Sparsity

e Integrates sparsity/CS with parameter estimation

e Parametric dictionaries (PDs) collect observations for
a set of values of parameter of interest (one per column)
O ={01,....0n)
e Simple signals (e.g., few localization targets) can be
expressed via PDs using sparse coefficient vectors
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[Gorodntisky and Rao 1997] [Malioutov, Cetin, Willsky 2005]
[Cevher, Duarte, Baraniuk 2008] [Cevher, Gurbuz, McClellan, Chellapa 2008]][...]




Resolution in Frequency Domain

e Redundant Fourier Frame ¥ (c)

v =le() e(2) e (P2

e(f) = {6j27rf/N oJ272f /N 6j27r(N—1)f/N} o

o Increased resolution allows for more scenes to
be formulated as sparse in parametric dictionary



Resolution in Frequency Domain

e Redundant Fourier Frame ¥ (c)

U(c) = [e (%) e(%) €<N_cl/c>] N = 1024

Recovery
algorithms
operate similarly
to matched '
filtering:
p="U(c)"s




Part 1: Dealing with Coherence
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Issues with Parametric Dictionaries

e As parameter resolution increases (e.qg., larger number
of grid points), PD becomes increasingly coherent,
hampering sparse approximation algorithms

e PD’s high coherence is a manifestation of resolution
issues in underlying estimation problem

e Structured sparsity models can mitigate this issues
by preventing PD elements with coherence above target
maximum v from appearing simultaneously in
recovered signal
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Structured Sparse Signals

e A K-sparse signal lives on ¢ A K-structured sparse

the collection of K-dim signal lives on a particular

subspaces aligned with (reduced) collection of

coordinate axes K-dimensional canonical
subspaces
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[Baraniuk, Cevher, Duarte, Hegde 2010]



Leveraging Structure in Recovery

Many state-of-the-art sparse recovery algorithms
(greedy and optimization solvers) rely on

thl‘EShOldil‘lg s = ’7'(37 K) [Daubechies, Defrise, and DeMol;
Nowak, Figueiredo, and Wright;
Tropp and Needell; Blumensath and Davies...]

‘)= (n) if |s(n)| is among K largest,
ST 0  otherwise.

Thresholding provides the
best approximation of
s within X g

/! . =
s’ = arg min ||s — 3|




Structured Recovery Algorithms

e Modify existing approaches to obtain
structure-aware recovery algorithms:
replace the thresholding step with a
best structured sparse approximation step
that finds the closest point within union of subspaces

s’ =M(s, K) =arg min ||s — 5
o (s, K) = arg min |ls - 5[
Greedy structure-aware recovery
algorithms inherit guarantees
of generic counterparts

(even though feasible set may be
Ok nonconvex)

[Baraniuk, Cevher, Duarte, Hegde 2010]



Structured Frequency-Sparse Signals

e A K-structured PD-sparse
signal f consists of K PD
elements that are mutually
incoherent:

K
S = Zak\I!(Qk) - T@,y if
k=1
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e If x is K-structured frequency-sparse, then there exists a
K-sparse vector «a such that s = Vga and the nonzeros in
are spaced apart from each other (band exclusion).




Standard Sparse Signal Recovery
Iterative Hard Thresholding

Inputs: Output:

e Measurement vector y e PD coefficient estimate 5
e Measurement matrix W

e Sparsity K

e Initialize: 50 =0,r =vy,72 =0
e While halting criterion false,

o 3 —1+1

e b § 1+ Uldly (estimate signal)
¢ $; <+ T(bK) (obtain best sparse approx.)
e 1<y — PUs, (calculate residual)

e Return estimate § = §;

[Blumensath and Davies 2009]



Structured Sparse Signal Recovery

Band-Excluding IHT

Inputs: Output:

e Measurement vector y e PD coefficient estimate 5
e Measurement matrix W

e Structured sparse approx.
algorithm M(z, K)
e Initialize: 50 =0,r =vy,2 =0
e While halting criterion false,
o 1 «+—1+1
e b 5, 1+ Uy (estimate signal)
* 5, + M(b, K) (obtain band-excluding sparse approx.)

e 1<y — PUs, (calculate residual)
e Return estimate s = s;

Can be applied to a variety of greedy algorithms
(CoSaMP, OMP, Subspace Pursuit, etc.)

[Duarte and Baraniuk, 2012] [Fannjiang and Liao, 2012]



Median Frequency Estimation Error, Hz

Compressive Line Spectral Estimation:
Performance Evaluation
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Part 2: From Discrete
to Continuous Models
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From Discrete to Continuous Models

e PD can be conceived as a sampling from an infinite set
of parametric signals; e.g., TDOA dictionary s, contains a
discrete set of values for the time delay parameter:

Urpoa = [S0 ST/N, --- ST(N,—1)/N,]

St = [8(7)8(T+%) S(T#—%) S(T—F(N]_VDT)}

e \ector s, varies smoothly in each entry as a function of 7;
we can represent the signal set as a one-dimensional
nonlinear manifold:
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From Discrete to Continuous Models

e For computational reasons, we wish to design methods
that allow us to interpolate the manifold from the
samples obtained in the PD to increase the resolution of
the parameter estimates.

e An interpolation-based compressive parameter
estimation algorithm obtains projection values for sets of
manifold samples and interpolates manifold around
location of peak projection to get parameter estimate
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Interpolating the Manifold:
Polar Interpolation

e All points in manifold have
equal norm (delayed
versions of fixed waveform)

e Distance between manifold
samples is uniform
(depends only on parameter
difference, not on parameter
values)

e TDOA manifold features
these two properties



Interpolating the Manifold:
Polar Interpolation

e Manifold must be contained
within unit Euclidean ball
(hypersphere)

e Manifold has uniform
curvature, enabling
parameter-independent
interpolation scheme

e Project signal estimates
into hypersphere

e Find closest point in
manifold by interpolating
from closest samples with
polar coordinates




Interpolating the Manifold:
Polar Interpolation

R e Find closest point in

N, manifold by interpolating
from closest samples with
polar coordinates:

Sto—T /Ny — L= (90 — A

A
B S7o+T/Ny Sr0 €7 £ =00
®5s Sto+T /Ny HZZH()—FA
“24, S L= 7
e Map back from manifold to
‘‘‘‘‘ S parameter space to obtain
............. To—T /N

final parameter estimates

0 T; Akin to Continuous Basis Pursuit (CBP)
T [Ekanadham, Tranchina, and Simoncelli 2011]




Compressive Time Delay Estimation:
Performance Evaluation
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Compressive Time Delay Estimation:
Performance Evaluation (Noise)

10 ‘
——BOMP
——BOMP+Poly L
N cs+ToE.MUusic || Waveform: chirp of
=107 —-BoMP+CcBP 1| length 1us
) —=—BOMP+Polar
=
S .
= 107" . :
£ — ———— N, = 500, K = 3,
@ |
> c=1, At =1pus
< 107}
O BOMP [Fannjiang
and Liao 2012]
107 * | |
0 5 10 15 20

SNR (dB)



Polar Interpolation for
Off-The-Grid Frequency Estimation

e Same properties from time
delay estimation manifold
are also present in complex
exponential manifold.:

- uniform curvature

- equal norm
e(fo—1/c) <> L =0 — A
e(fo) <> £ =6
e(fo+1/c) <> £ =0+ A

T <> L =7

e Use polar interpolation
e Map back from manifold to
frequency estimates




Compressive Line Spectral Estimation:
Performance Evaluation
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Compressive Line Spectral Estimation:
Performance Evaluation (Noise)
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Compressive Line Spectral Estimation:
Computational Expense

Time (seconds)| Noiseless | Noisy
¢1-analysis | 9.5245 8.8222

SIHT 0.2628 0.1499
SDP 8.2355 9.9796
BOMP 0.0141 0.0101
CBP 46.9645 40.3477

BISP 5.4265 1.4060




Part 3: Meaningtul
Performance Metrics

Dian Mo



Issues with PDs/Structured Sparsity:
Sensitivity to Maximal Coherence Value

e Example: Compressive
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e Parameter v set to optimal value for chirp of length 1 us

e As length of chirp wave increases, performance of
compressive TDE varies widely

e Shape of correlation function dependent on chirp length
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Issues with PDs:
Euclidean Norm Guarantees

MO,

grid

e Most recovery methods
provide guarantees to keep
Euclidean norm error ||s — §||2
small

e This metric, however, is not
connected to quality of
parameter estimates

e Example: both estimates
have same Euclidean error
[s = s1ll2 = [|s — 82|l
but provide very different
location estimates.

e We search for a performance
metric better suited to the
use of PD coefficient vectors
(i.e., [|6 — 0]
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3, Improved Performance Metric:

Earth Mover’s Distance

e Earth Mover’s Distance (EMD) is based on
concept of "mass” flowing between
the entries of first vector in order to
match the second

e EMD value is minimum “work” needed
(measured as mass x transport distance)
for first vector to match second'

EMD(a, o) := mm Z fiilt — 7|

1,7=1
S-t-sz ;| Vi=1,..., N,
J
Zfij:k/)é\]‘\vljzl, .,N.
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Improved Performance Metric:
Earth Mover’s Distance

e Earth Mover’s Distance (EMD) is based on
concept of "mass” flowing between
the entries of first vector in order to
match the second

e EMD value is minimum “work” needed
(measured as mass x transport distance)
for first vector to match second:

e When PDs are used, EMD captures
parameter estimation error by
measuring distance traveled by “"mass”

e Parameter values must be proportional
to indices in PD coefficient vector

e How to introduce EMD metric
into CS recovery process?
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Sparse Approximation with
Earth Mover’s Distance

e To integrate into greedy algorithms, we
will need to solve the EMD-optimal
K-sparse approximation problem

Trx = arg min EMD(x, )
TED i

e It can be shown that approximation
can be obtained by performing
K=-median clustering on set of points at
locations{1, ..., N} with respective
weights{|[L]],.. .. |2[N]]} )

e Cluster centroids provide support of T i,
values can be easily computed to
minimize EMD/estimation error

[Indyk and Price 2009]



Structured Sparse Signal Recovery

Band-Excluding IHT

Inputs: Output:

e Measurement vector y e PD coefficient estimate 5
e Measurement matrix W

e Structured sparse approx.
algorithm M(z, K)
e Initialize: 50 =0,r =vy,2 =0
e While halting criterion false,
o 1 «+—1+1
e b 5, 1+ Uy (estimate signal)
* 5, + M(b, K) (obtain band-excluding sparse approx.)

e 1<y — PUs, (calculate residual)
e Return estimate s = s;

Can be applied to a variety of greedy algorithms
(CoSaMP, OMP, Subspace Pursuit, etc.)

[Duarte and Baraniuk, 2012] [Fannjiang and Liao, 2012]



EMD + Sparse Signhal Recovery

Clustered IHT
Inputs: Output:
e Measurement vector y e PD coefficient estimate 5
e Measurement matrix W

e Sparsity K

e Initialize: 5o =0,r =vy,72 =10
e While halting criterion false,
e 1 +—1+1
e b § 1+ Uldly (estimate signal)

e §; = arg Bmén EMD(b,b)  (best sparse approx. in EMD)
ClLK

e r<y— PUs, (calculate residual)
e Return estimate s = ;

Can be applied to a variety of greedy algorithms
(CoSaMP, OMP, Subspace Pursuit, etc.)



Mean Parameter Estimation Error [MS]
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Numerical Results
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e Example: Compressive TDE w/ PD & random demodulator
e Performance depends on measurement ratio Kk = M /N
e TDE performance varies widely as chirp length increases
e Consistent behavior for EMD-based signal recovery,

but consistent bias observed
e Bias partially due to parameter space discretization
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Clustered Subspace Pursuit

e Example: Compressive TDE w/ PD & random demodulator

e Performance depends on measurement ratio Kk = M /N

e When integrated with polar interpolation, performance
of compressive TDE improves significantly

e Sensitivity of Band-Excluding SP becomes more severe,
while Clustered SP remains robust



Conclusions

In radar and other parameter estimation settings,
retrofitting sparsity is not enough!

— PDs enable use of CS, but often are coherent

— band exclusion can help, but must be highly precise

— issues remain with guarantees (Euclidean is not useful)
— PDs also discretize parameter space, limiting resolution

Address discretization with tractable signal models
- from PDs to manifolds via interpolation techniques
- readily available models for time delay, frequency/doppler

Earth Mover’s Distance is a suitable metric
— easily implementable by leveraging K-median clustering

— EMD is suitable for dictionaries with well-behaved
(compact) correlation functions

Ongoing work: multidimensional extensions,
sensitivity to noise, theoretical analysis of EMD...
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