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Compressive Sensing (CS)

• Integrates linear acquisition with dimensionality reduction

linear 
measurements

discrete-time
signal

nonzero components
in suitable transform

[Candès, Romberg, Tao; Donoho 2006]
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• Transmit low-autocorrelation signal f(t), (e.g., Alltop seq.), 
receive reflection from point source at range x and speed v

• Range and velocity (x,v) of the target can be inferred from 
time delay-doppler shift

CS Radar: The Basics (1-D)



• Time-domain sampling (Nt), 
discretization of observable 
ranges (Nx) and velocities (Nv)
(parameter space sampling) 
provides an easy-to-implement 
Gabor frame as a sparsity 
dictionary for observations:

– Nx Components                    of size
– Di: Diagonal matrix w/samples of f, shifted by i
–        : Modulation matrix with entries

• Each sparsity dictionary element 
(shift/modulation) linked to 
delay-Doppler pair value 

CS Radar: The Basics (1-D)

[Herman and Strohmer 2009]



• Observations from multiple point 
sources are aggregated by the 
transmission media, providing 
sampled measurements

• CS measurements:
• Recover vector s, “read” out delay-

Doppler map
• Vector s is sparse only in the case 

when the target’s delay/doppler
is among values sampled in the 
Gabor frame 

CS Radar: The Basics (1-D)

[Herman and Strohmer 2009]



• Integrates sparsity/CS with parameter estimation
• Parametric dictionaries (PDs) collect observations for 

a set of values of parameter of interest (one per column)

• Simple signals (e.g., few localization targets) can be 
expressed via PDs using sparse coefficient vectors

Parametric Dictionaries for Sparsity

[Gorodntisky and Rao 1997] [Malioutov, Cetin, Willsky 2005]
[Cevher, Duarte, Baraniuk 2008] [Cevher, Gurbuz, McClellan, Chellapa 2008][...]



Resolution in Frequency Domain

, c = 10

• Redundant Fourier Frame

T

• Increased resolution allows for more scenes to 
be formulated as sparse in parametric dictionary



, c = 10
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Recovery 
algorithms 
operate similarly 
to matched 
filtering:

Dirichlet Kernel

• Redundant Fourier Frame

Resolution in Frequency Domain

Coherence



Part 1: Dealing with Coherence

Rich Baraniuk 
(Rice U.)



• Structured sparsity models can mitigate this issues 
by preventing PD elements with coherence above target 
maximum    from appearing simultaneously in 
recovered signal
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• As parameter resolution increases (e.g., larger number 
of grid points), PD becomes increasingly coherent, 
hampering sparse approximation algorithms

• PD’s high coherence is a manifestation of resolution 
issues in underlying estimation problem

Issues with Parametric Dictionaries

 [Duarte, 2012]
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Structured Sparse Signals

• A K-sparse signal lives on 
the collection of K-dim 
subspaces aligned with 
coordinate axes

RN

�K � �K

• A K-structured sparse 
signal lives on a particular 
(reduced) collection of 
K-dimensional canonical 
subspaces

�K � �K

RN

[Baraniuk, Cevher, Duarte, Hegde 2010]



Many state-of-the-art sparse recovery algorithms 
(greedy and optimization solvers) rely on 
thresholding

RN

�K � �K

Leveraging Structure in Recovery

[Daubechies, Defrise, and DeMol; 
Nowak, Figueiredo, and Wright; 
Tropp and Needell; Blumensath and Davies...]

Thresholding provides the 
best approximation of 
s within �K � �K
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• Modify existing approaches to obtain 
structure-aware recovery algorithms: 
replace the thresholding step with a 
best structured sparse approximation step 
that finds the closest point within union of subspaces

RN

�K � �K

Greedy structure-aware recovery 
algorithms inherit guarantees 
of generic counterparts 
(even though feasible set may be 
nonconvex)

Structured Recovery Algorithms

[Baraniuk, Cevher, Duarte, Hegde 2010] 
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• If x is K-structured frequency-sparse, then there exists a 
K-sparse vector    such that               and the nonzeros in    
are spaced apart from each other (band exclusion).

Structured Frequency-Sparse Signals
• A K-structured PD-sparse 

signal f consists of K PD 
elements that are mutually 
incoherent:

RN

if
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• Initialize:
• While halting criterion false,

•  
•                                           (estimate signal)
•                           (obtain best sparse approx.)
•                                        (calculate residual)

• Return estimate

Inputs:
• Measurement vector y
• Measurement matrix
• Sparsity K

Standard Sparse Signal Recovery
Iterative Hard Thresholding

Output:
• PD coefficient estimate 

[Blumensath and Davies 2009]



• Initialize:
• While halting criterion false,

•  
•                                                             (estimate signal)
•                           (obtain band-excluding sparse approx.)
•                                                          (calculate residual)

• Return estimate

Output:
• PD coefficient estimate 

Structured Sparse Signal Recovery
Band-Excluding IHT

Inputs:
• Measurement vector y
• Measurement matrix
• Structured sparse approx. 

algorithm 

[Duarte and Baraniuk, 2012] [Fannjiang and Liao, 2012]

Can be applied to a variety of greedy algorithms 
(CoSaMP, OMP, Subspace Pursuit, etc.)
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Compressive Line Spectral Estimation: 
Performance Evaluation

N = 1024
K = 20 
c = 5          

 Df = 0.1 Hz 
for DFT frame

Recovery via 
IHT Algorithm 
(or variants) 



Part 2: From Discrete 
to Continuous Models

Karsten Fyhn 
(Aalborg U.)

Hamid 
Dadkhahi

S.H. Jensen
(Aalborg U.)



• PD can be conceived as a sampling from an infinite set 
of parametric signals; e.g., TDOA dictionary     contains a 
discrete set of values for the time delay parameter:

From Discrete to Continuous Models

0 T

Parameter space

• Vector     varies smoothly in each entry as a function of   ; 
we can represent the signal set as a one-dimensional 
nonlinear manifold: 
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From Discrete to Continuous Models
• For computational reasons, we wish to design methods 

that allow us to interpolate the manifold from the 
samples obtained in the PD to increase the resolution of 
the parameter estimates.

• An interpolation-based compressive parameter 
estimation algorithm obtains projection values for sets of 
manifold samples and interpolates manifold around 
location of peak projection to get parameter estimate
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•All points in manifold have 
equal norm (delayed 
versions of fixed waveform)

•Distance between manifold 
samples is uniform 
(depends only on parameter 
difference, not on parameter 
values)

•TDOA manifold features 
these two properties

...

Interpolating the Manifold:
Polar Interpolation

s0



•Manifold must be contained 
within unit Euclidean ball 
(hypersphere)

•Manifold has uniform 
curvature, enabling 
parameter-independent 
interpolation scheme

•Project signal estimates 
into hypersphere

•Find closest point in 
manifold by interpolating 
from closest samples with 
polar coordinates

...

Interpolating the Manifold:
Polar Interpolation

s0



•Find closest point in 
manifold by interpolating 
from closest samples with 
polar coordinates:

•Map back from manifold to 
parameter space to obtain 
final parameter estimates

Interpolating the Manifold:
Polar Interpolation

Akin to Continuous Basis Pursuit (CBP) 
[Ekanadham, Tranchina, and Simoncelli 2011]
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Compressive Time Delay Estimation: 
Performance Evaluation

Nt = 500, K = 3, 
c = 1,                 . 

BOMP [Fannjiang 
and Liao 2012]

Waveform: chirp of 
length 1



Compressive Time Delay Estimation: 
Performance Evaluation (Noise)

Nt = 500, K = 3, 
c = 1,                 . 

BOMP [Fannjiang 
and Liao 2012]

Waveform: chirp of 
length 1
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• Same properties from time 
delay estimation manifold 
are also present in complex 
exponential manifold:
- uniform curvature
- equal norm

• Use polar interpolation
• Map back from manifold to 

frequency estimates 

Polar Interpolation for 
Off-The-Grid Frequency Estimation

e(f0-1/c)

e(f0+1/c)
e(f0)

f

0 N



Compressive Line Spectral Estimation: 
Performance Evaluation

Algorithm 1 BISP
INPUTS: Compressed signal y, sparsity K, measurement
matrix A and spacing between dictionary elements �.
OUTPUTS: Reconstructed signal ˜

f and frequency esti-
mates ˜!.
INITIALIZE: � = AD, i = 1, S

0
= ;

while i  K do
S

0
= S

0 [ argmaxi |hy,Aii|, i 62 B0(S
0
), i = i+ 1

end while
y

0
r = y ��S0

�

†
S0y, n = 1

LOOP:
repeat

i = 1, S

n
= S

n�1

while i  K do
S

n
= S

n[argmaxi |hy,Aii|, i 62 B0(S
n
), i = i+1

end while
a = (�Sn

)

†
y

S

n
= supp(thresh(a,K))

⌦ = [{�(s� 1),�s,�(s+ 1)|s 2 S

n}
From T(y,A,⌦) obtain ˜

f and ˜! using (9) and (6)
y

n
r = y �A

˜

f , n = n+ 1

until ||yn
r ||2 < ✏ · ||yn�1

r ||2 _ n  K

vector or a reconstructed signal (`1-synthesis, `1-analysis,
SIHT, and SDP), we apply the MUSIC algorithm [15] on the
reconstructed signal to estimate its frequencies. In the BISP
and BOMP algorithms, we exclude atoms with coherence
⌘ > 0.25 using (4).

For the first experiment, we explore a range of subsam-
pling ratios  with noiseless measurements to verify the level
of compression that allows for successful estimation. We set
✏ = 10

�10 for the relevant algorithms. The result of the nu-
merical experiment is shown in Figure 1. In the noiseless
case, SDP obtains the best result. The polar interpolation al-
gorithms (CBP and BISP) both converge to a given estimation
precision, which corresponds to the level of approximation
error. When the number of measurements M is sufficiently
small, CBP outperforms `1-synthesis. The performance of
BOMP and SIHT is worst among the algorithms tested. Sur-
prisingly, while the DFT coefficients x found by `1-synthesis
are not sparse and do not match the original frequencies, the
signal f is still reconstructed accurately, and so the MUSIC
algorithm recovers the frequencies adequately.

For the second experiment, we include measurement
noise in the signal model. We fix  = 0.5 and vary the signal-
to-noise ratio (SNR) from 0 to 20 dB. In the noisy case, the
polar interpolation algorithms perform best. This is because
their interpolation step relies less on the sparsity of the signal
and more on the known signal model and the fitting to a circle
on the manifold. Additionally, the presence of noise renders
the measurements non-sparse in the dictionaries used by the
non-interpolating algorithms, hindering their performance.

The computation time of the algorithms is also of impor-
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Fig. 1. Frequency estimation performance in noise-less case.

0 5 10 15 20

10

�2

10

�1

10

0

10

1

10

2

10

3

SNR [dB]

A
ve

ra
ge

co
st

in
fr

eq
ue

nc
y

es
tim

at
io

n

`1-analysis
`1-synthesis

SIHT
SDP

BOMP
CBP
BISP

Fig. 2. Frequency estimation performance in noisy case.

Noiseless Noisy
`1-analysis 9.5245 8.8222
`1-synthesis 2.9082 2.7340
SIHT 0.2628 0.1499
SDP 8.2355 9.9796
BOMP 0.0141 0.0101
CBP 46.9645 40.3477
BISP 5.4265 1.4060

Table 1. Average computation times in seconds.

tance, and we have listed the average computation times in
Table 1. We observed that most algorithms exhibit compu-
tation time roughly independent of M , with the exception of
`1-synthesis and CBP. The table shows that the excellent per-
formance of SDP in Figure 1 is tempered by its high computa-
tional complexity, as well as its lack of flexibility on the mea-
surement scheme. Moreover, the relaxation in BISP that ac-
counts for the presence of noise reduces its computation time,
increasing its performance advantage over SDP and CBP.

Algorithm 1 BISP
INPUTS: Compressed signal y, sparsity K, measurement
matrix A and spacing between dictionary elements �.
OUTPUTS: Reconstructed signal ˜

f and frequency esti-
mates ˜!.
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vector or a reconstructed signal (`1-synthesis, `1-analysis,
SIHT, and SDP), we apply the MUSIC algorithm [15] on the
reconstructed signal to estimate its frequencies. In the BISP
and BOMP algorithms, we exclude atoms with coherence
⌘ > 0.25 using (4).

For the first experiment, we explore a range of subsam-
pling ratios  with noiseless measurements to verify the level
of compression that allows for successful estimation. We set
✏ = 10

�10 for the relevant algorithms. The result of the nu-
merical experiment is shown in Figure 1. In the noiseless
case, SDP obtains the best result. The polar interpolation al-
gorithms (CBP and BISP) both converge to a given estimation
precision, which corresponds to the level of approximation
error. When the number of measurements M is sufficiently
small, CBP outperforms `1-synthesis. The performance of
BOMP and SIHT is worst among the algorithms tested. Sur-
prisingly, while the DFT coefficients x found by `1-synthesis
are not sparse and do not match the original frequencies, the
signal f is still reconstructed accurately, and so the MUSIC
algorithm recovers the frequencies adequately.

For the second experiment, we include measurement
noise in the signal model. We fix  = 0.5 and vary the signal-
to-noise ratio (SNR) from 0 to 20 dB. In the noisy case, the
polar interpolation algorithms perform best. This is because
their interpolation step relies less on the sparsity of the signal
and more on the known signal model and the fitting to a circle
on the manifold. Additionally, the presence of noise renders
the measurements non-sparse in the dictionaries used by the
non-interpolating algorithms, hindering their performance.

The computation time of the algorithms is also of impor-
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Noiseless Noisy
`1-analysis 9.5245 8.8222
`1-synthesis 2.9082 2.7340
SIHT 0.2628 0.1499
SDP 8.2355 9.9796
BOMP 0.0141 0.0101
CBP 46.9645 40.3477
BISP 5.4265 1.4060

Table 1. Average computation times in seconds.

tance, and we have listed the average computation times in
Table 1. We observed that most algorithms exhibit compu-
tation time roughly independent of M , with the exception of
`1-synthesis and CBP. The table shows that the excellent per-
formance of SDP in Figure 1 is tempered by its high computa-
tional complexity, as well as its lack of flexibility on the mea-
surement scheme. Moreover, the relaxation in BISP that ac-
counts for the presence of noise reduces its computation time,
increasing its performance advantage over SDP and CBP.

Algorithm 1 BISP
INPUTS: Compressed signal y, sparsity K, measurement
matrix A and spacing between dictionary elements �.
OUTPUTS: Reconstructed signal ˜

f and frequency esti-
mates ˜!.
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vector or a reconstructed signal (`1-synthesis, `1-analysis,
SIHT, and SDP), we apply the MUSIC algorithm [15] on the
reconstructed signal to estimate its frequencies. In the BISP
and BOMP algorithms, we exclude atoms with coherence
⌘ > 0.25 using (4).

For the first experiment, we explore a range of subsam-
pling ratios  with noiseless measurements to verify the level
of compression that allows for successful estimation. We set
✏ = 10

�10 for the relevant algorithms. The result of the nu-
merical experiment is shown in Figure 1. In the noiseless
case, SDP obtains the best result. The polar interpolation al-
gorithms (CBP and BISP) both converge to a given estimation
precision, which corresponds to the level of approximation
error. When the number of measurements M is sufficiently
small, CBP outperforms `1-synthesis. The performance of
BOMP and SIHT is worst among the algorithms tested. Sur-
prisingly, while the DFT coefficients x found by `1-synthesis
are not sparse and do not match the original frequencies, the
signal f is still reconstructed accurately, and so the MUSIC
algorithm recovers the frequencies adequately.

For the second experiment, we include measurement
noise in the signal model. We fix  = 0.5 and vary the signal-
to-noise ratio (SNR) from 0 to 20 dB. In the noisy case, the
polar interpolation algorithms perform best. This is because
their interpolation step relies less on the sparsity of the signal
and more on the known signal model and the fitting to a circle
on the manifold. Additionally, the presence of noise renders
the measurements non-sparse in the dictionaries used by the
non-interpolating algorithms, hindering their performance.

The computation time of the algorithms is also of impor-
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Noiseless Noisy
`1-analysis 9.5245 8.8222
`1-synthesis 2.9082 2.7340
SIHT 0.2628 0.1499
SDP 8.2355 9.9796
BOMP 0.0141 0.0101
CBP 46.9645 40.3477
BISP 5.4265 1.4060

Table 1. Average computation times in seconds.

tance, and we have listed the average computation times in
Table 1. We observed that most algorithms exhibit compu-
tation time roughly independent of M , with the exception of
`1-synthesis and CBP. The table shows that the excellent per-
formance of SDP in Figure 1 is tempered by its high computa-
tional complexity, as well as its lack of flexibility on the mea-
surement scheme. Moreover, the relaxation in BISP that ac-
counts for the presence of noise reduces its computation time,
increasing its performance advantage over SDP and CBP.

N = 100, K = 4, 
c = 5,           = 0.2 Hz

BOMP [Fannjiang and Liao 2012]
SDP [Tang, Rhaskar, Shah, Recht 2012]
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Compressive Line Spectral Estimation: 
Performance Evaluation (Noise)

Algorithm 1 BISP
INPUTS: Compressed signal y, sparsity K, measurement
matrix A and spacing between dictionary elements �.
OUTPUTS: Reconstructed signal ˜

f and frequency esti-
mates ˜!.
INITIALIZE: � = AD, i = 1, S

0
= ;

while i  K do
S

0
= S

0 [ argmaxi |hy,Aii|, i 62 B0(S
0
), i = i+ 1

end while
y

0
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S0y, n = 1

LOOP:
repeat

i = 1, S

n
= S

n�1
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n[argmaxi |hy,Aii|, i 62 B0(S
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), i = i+1

end while
a = (�Sn

)
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y

S

n
= supp(thresh(a,K))

⌦ = [{�(s� 1),�s,�(s+ 1)|s 2 S

n}
From T(y,A,⌦) obtain ˜

f and ˜! using (9) and (6)
y

n
r = y �A

˜

f , n = n+ 1

until ||yn
r ||2 < ✏ · ||yn�1

r ||2 _ n  K

vector or a reconstructed signal (`1-synthesis, `1-analysis,
SIHT, and SDP), we apply the MUSIC algorithm [15] on the
reconstructed signal to estimate its frequencies. In the BISP
and BOMP algorithms, we exclude atoms with coherence
⌘ > 0.25 using (4).

For the first experiment, we explore a range of subsam-
pling ratios  with noiseless measurements to verify the level
of compression that allows for successful estimation. We set
✏ = 10

�10 for the relevant algorithms. The result of the nu-
merical experiment is shown in Figure 1. In the noiseless
case, SDP obtains the best result. The polar interpolation al-
gorithms (CBP and BISP) both converge to a given estimation
precision, which corresponds to the level of approximation
error. When the number of measurements M is sufficiently
small, CBP outperforms `1-synthesis. The performance of
BOMP and SIHT is worst among the algorithms tested. Sur-
prisingly, while the DFT coefficients x found by `1-synthesis
are not sparse and do not match the original frequencies, the
signal f is still reconstructed accurately, and so the MUSIC
algorithm recovers the frequencies adequately.

For the second experiment, we include measurement
noise in the signal model. We fix  = 0.5 and vary the signal-
to-noise ratio (SNR) from 0 to 20 dB. In the noisy case, the
polar interpolation algorithms perform best. This is because
their interpolation step relies less on the sparsity of the signal
and more on the known signal model and the fitting to a circle
on the manifold. Additionally, the presence of noise renders
the measurements non-sparse in the dictionaries used by the
non-interpolating algorithms, hindering their performance.

The computation time of the algorithms is also of impor-
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Fig. 2. Frequency estimation performance in noisy case.

Noiseless Noisy
`1-analysis 9.5245 8.8222
`1-synthesis 2.9082 2.7340
SIHT 0.2628 0.1499
SDP 8.2355 9.9796
BOMP 0.0141 0.0101
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tance, and we have listed the average computation times in
Table 1. We observed that most algorithms exhibit compu-
tation time roughly independent of M , with the exception of
`1-synthesis and CBP. The table shows that the excellent per-
formance of SDP in Figure 1 is tempered by its high computa-
tional complexity, as well as its lack of flexibility on the mea-
surement scheme. Moreover, the relaxation in BISP that ac-
counts for the presence of noise reduces its computation time,
increasing its performance advantage over SDP and CBP.
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SIHT, and SDP), we apply the MUSIC algorithm [15] on the
reconstructed signal to estimate its frequencies. In the BISP
and BOMP algorithms, we exclude atoms with coherence
⌘ > 0.25 using (4).

For the first experiment, we explore a range of subsam-
pling ratios  with noiseless measurements to verify the level
of compression that allows for successful estimation. We set
✏ = 10

�10 for the relevant algorithms. The result of the nu-
merical experiment is shown in Figure 1. In the noiseless
case, SDP obtains the best result. The polar interpolation al-
gorithms (CBP and BISP) both converge to a given estimation
precision, which corresponds to the level of approximation
error. When the number of measurements M is sufficiently
small, CBP outperforms `1-synthesis. The performance of
BOMP and SIHT is worst among the algorithms tested. Sur-
prisingly, while the DFT coefficients x found by `1-synthesis
are not sparse and do not match the original frequencies, the
signal f is still reconstructed accurately, and so the MUSIC
algorithm recovers the frequencies adequately.

For the second experiment, we include measurement
noise in the signal model. We fix  = 0.5 and vary the signal-
to-noise ratio (SNR) from 0 to 20 dB. In the noisy case, the
polar interpolation algorithms perform best. This is because
their interpolation step relies less on the sparsity of the signal
and more on the known signal model and the fitting to a circle
on the manifold. Additionally, the presence of noise renders
the measurements non-sparse in the dictionaries used by the
non-interpolating algorithms, hindering their performance.

The computation time of the algorithms is also of impor-
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Compressive Line Spectral Estimation: 
Computational Expense
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Part 3: Meaningful 
Performance Metrics
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Issues with PDs/Structured Sparsity: 
Sensitivity to Maximal Coherence Value

• Example: Compressive 
Time Delay Estimation 
(TDE) with PD and 
random demodulator

• Performance depends 
on measurement ratio 

• Structured sparsity 
(band exclusion) used 
to enable high-
resolution TDE

• Parameter    set to optimal value for chirp of length 
• As length of chirp wave increases, performance of 

compressive TDE varies widely
• Shape of correlation function dependent on chirp length 



Issues with PDs: 
Euclidean Norm Guarantees

• Most recovery methods 
provide guarantees to keep 
Euclidean norm error 
small

• This metric, however, is not 
connected to quality of 
parameter estimates

• Example: both estimates 
have same Euclidean error

but provide very different 
location estimates.

• We search for a performance 
metric better suited to the 
use of PD coefficient vectors 
(i.e.,           )

delay grid

s



Improved Performance Metric: 
Earth Mover’s Distance

• Earth Mover’s Distance (EMD) is based on 
concept of “mass” flowing between 
the entries of first vector in order to 
match the second

• EMD value is minimum “work” needed
(measured as mass x transport distance)  
for first vector to match second:

s.t.
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Improved Performance Metric: 
Earth Mover’s Distance

• When PDs are used, EMD captures 
parameter estimation error by 
measuring distance traveled by “mass”

• Parameter values must be proportional 
to indices in PD coefficient vector

• How to introduce EMD metric 
into CS recovery process?

• Earth Mover’s Distance (EMD) is based on 
concept of “mass” flowing between 
the entries of first vector in order to 
match the second

• EMD value is minimum “work” needed
(measured as mass x transport distance)  
for first vector to match second:

s
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• To integrate into greedy algorithms, we 
will need to solve the EMD-optimal 
K-sparse approximation problem

• It can be shown that approximation      
can be obtained by performing 
K-median clustering on set of points at 
locations                  with respective 
weights

• Cluster centroids provide support of      , 
values can be easily computed to 
minimize EMD/estimation error

Sparse Approximation with
Earth Mover’s Distance

[Indyk and Price 2009]

s

s



• Initialize:
• While halting criterion false,

•  
•                                                             (estimate signal)
•                           (obtain band-excluding sparse approx.)
•                                                          (calculate residual)

• Return estimate

Output:
• PD coefficient estimate 

Structured Sparse Signal Recovery
Band-Excluding IHT

Inputs:
• Measurement vector y
• Measurement matrix
• Structured sparse approx. 

algorithm 

[Duarte and Baraniuk, 2012] [Fannjiang and Liao, 2012]

Can be applied to a variety of greedy algorithms 
(CoSaMP, OMP, Subspace Pursuit, etc.)



•                                                          (calculate residual)
• Return estimate

• Initialize:
• While halting criterion false,

•  
•                                                             (estimate signal)
•                                           (best sparse approx. in EMD)

Output:
• PD coefficient estimate 

Inputs:
• Measurement vector y
• Measurement matrix
• Sparsity K

EMD + Sparse Signal Recovery

Can be applied to a variety of greedy algorithms 
(CoSaMP, OMP, Subspace Pursuit, etc.)

Clustered IHT



Numerical Results
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• Example: Compressive TDE w/ PD & random demodulator
• Performance depends on measurement ratio 
• TDE performance varies widely as chirp length increases
• Consistent behavior for EMD-based signal recovery, 

but consistent bias observed
• Bias partially due to parameter space discretization
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Band-Excluding Subspace Pursuit Clustered Subspace Pursuit
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Numerical Results
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• Example: Compressive TDE w/ PD & random demodulator
• Performance depends on measurement ratio 
• When integrated with polar interpolation, performance 

of compressive TDE improves significantly
• Sensitivity of Band-Excluding SP becomes more severe, 

while Clustered SP remains robust

Band-Excluding Subspace Pursuit Clustered Subspace Pursuit

M
ea

n 
Pa

ra
m

et
er

 E
st

im
at

io
n 

Er
ro

r

M
ea

n 
Pa

ra
m

et
er

 E
st

im
at

io
n 

Er
ro

r



Conclusions
• In radar and other parameter estimation settings, 

retrofitting sparsity is not enough!
– PDs enable use of CS, but often are coherent
– band exclusion can help, but must be highly precise
– issues remain with guarantees (Euclidean is not useful)
– PDs also discretize parameter space, limiting resolution

• Address discretization with tractable signal models
– from PDs to manifolds via interpolation techniques
– readily available models for time delay, frequency/doppler

• Earth Mover’s Distance is a suitable metric
– easily implementable by leveraging K-median clustering 
– EMD is suitable for dictionaries with well-behaved 

(compact) correlation functions

• Ongoing work: multidimensional extensions, 
sensitivity to noise, theoretical analysis of EMD...
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