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Very high sampling rates:
hardware excessive solutions

High DSP rates

Sampling: “Analog Girl in a Digital 
 World…”

 
Judy Gorman 99

Digital worldAnalog world

Sampling
ADC

Signal processing 
Image denoising
Analysis…

Music
Radar
Image…

ADCs, the front end of every digital 
 application, remain a major bottleneck

Reconstruction
DAC
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Today’s Paradigm

The Separation Theorem:
Circuit designer experts design samplers 

at Nyquist rate or higher
DSP/machine learning experts process the data 

Typical first step: Throw away (or combine in a “smart”
 

way 
e.g. dimensionality reduction) much of the data …
Logic: Exploit structure prevalent in most applications to reduce 
DSP processing rates
DSP algorithms have a long history of leveraging structure: 
MUSIC, model order selection, parametric estimation …
However, the analog step is one of the costly steps

Can we use the structure to reduce sampling rate + first 
 DSP rate (data transfer, bus …) as well?
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Xampling: 
 Compression + Sampling

Reduce storage/reduce sampling rates
Reduce processing rates
Reduce power consumption
Increase resolution
Improve denoising/deblurring capabilities
Improved classification/source separation

Exploit analog structure to improve processing performance:

Goal:
Survey the main principles involved in exploiting analog structure
Provide a variety of different applications and benefits
Applications to radar
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Compressed Sensing and Hardware

Explosion of work on compressed sensing in digital applications
Many papers describing models for CS of analog signals
Have these models made it into wideband hardware?
CS is a digital theory –

 
treats vectors not analog inputs, processing 

rates can be high, and are problematic in low SNR

InputInput
Sparsity Sparsity 
MeasurementMeasurement
Recovery Recovery 

Standard CS Standard CS 
vector x
few nonzero values 
Random/det. matrix 
convex optimization
greedy methods 

Analog CSAnalog CS
analog signal x(t) 

? 
RF hardware 
need to recover analog input or 
specific data efficiently 

We use CS only after sampling 
Enables real hardware, low processing rates and low SNR



6

Part I: Motivation
Part II: Xampling: Compressed sampling of 
analog signals
Part III: Applications to radar

Pulse radar
Ultrasound imaging
LTV system identification

Talk Outline
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Part 1:
Motivation
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Sampling theory has developed tremendously in the 60+ years since Shannon
Recovery methods have been developed for signals in arbitrary subspaces
(Unser,Aldroubi,Vaidyanathan,Blu,Jerri,Vetterli,Grochenig,Feichtinger,DeVore,Daubechies,Christensen,Eldar, …) 

Sampling rate: 
Degrees of freedom
of subspace

Recovery from nonlinear samples as well
 

(Dvorkind, Matusiak and Eldar 2008)

Classical/Modern Sampling

Perfect Reconstruction in a Subspace



Optical modulatorsPower amplifiers CCD arrays Companding



9

Structured Analog Models 

Can be viewed as            bandlimited (subspace)
But sampling at rate                  is a waste of resources
For wideband applications Nyquist sampling may be infeasible

Multiband communication: 

Question:
How do we treat structured (non‐subspace) models efficiently?

Unknown carriers – non‐subspace
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Cognitive Radio

Cognitive radio mobiles utilize unused spectrum ``holes’’
Spectral map is unknown a-priori, leading to a multiband model

Federal Communications Commission (FCC)
frequency allocation

Licensed spectrum highly underused: E.g. TV white space,  guard bands and more
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Structured Analog Models

Digital match filter or super-resolution ideas (MUSIC etc.) (Quazi,Brukstein, 
Shan,Kailath,Pallas,Jouradin,Schmidt,Saarnisaari,Roy,Kumaresan,Tufts …)
But requires sampling at the Nyquist rate of 
The pulse shape is known –

 
No need to waste sampling resources!

Medium identification:

Unknown delays – non‐subspace

Channel

Question (same):
How do we treat structured (non‐subspace) models efficiently?

Similar problem arises in radar, UWB 
communications, timing recovery problems …
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Ultrasound
High digital processing rates
Large power consumption

Tx pulse Ultrasonic probe

Rx signal Unknowns

(Collaboration with General Electric 
Israel)

Echoes result from scattering in the tissue
The image is formed by identifying the 
scatterers
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To increase SNR the reflections are viewed by an antenna array
SNR is improved through beamforming by introducing appropriate 
time shifts to the received signals

Requires high sampling rates and large data processing rates
One image trace requires 128 samplers @ 20M, beamforming to 150 
points,  a total of 6.3x106

 

sums/frame

Processing Rates

Scan Plane

Xdcr

Focusing the received

 
beam by applying delays

Compressed Beamforming
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Resolution (1): Radar
Principle:

A known pulse is transmitted
Reflections from targets are received 
Target’s ranges and velocities are identified

Challenges:
Targets can lie on an arbitrary grid
Process of digitizing 
 loss of resolution in range-velocity domain
Wideband radar requires high rate sampling and processing 

which also results in long processing time
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Resolution (2): Subwavelength Imaging

Diffraction limit:  Even a perfect optical imaging system has a 
resolution limit determined by the wavelength λ

The smallest observable detail is larger than ~ λ/2
This results in image smearing 

100 nm

(Collaboration with the groups of Segev and Cohen at the Technion)

Sketch of an optical microscope: 
the physics of EM waves acts 
as an ideal low‐pass filterNano‐holes 

as seen in 
electronic microscope

Blurred image 
seen in 

optical microscope

λ=514nm
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Imaging via “Sparse”
 

Modeling

Union method

150 nm

Radar:

Subwavelength Coherent Diffractive Imaging:

Szameit et al., Nature Photonics, ‘12

Bajwa et al., ‘11

Recovery of 
sub‐wavelength images 
from highly truncated 
Fourier power spectrum
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Part 2:
Xampling
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Xampling

Xampling: Compression+Sampling
Prior to analog sampling reduce bandwidth by projecting data 

onto low dimensional analog space
Creates aliasing of the data
Sample the data at low rate in such a way that in the digital 

domain we get a CS problem
Typically process in frequency: low rate processing, robustness
Results in low rate, low bandwidth, simple hardware and low 

computational cost

x(t) Acquisition
Compressed 
sensing and 
processing

recovery

Analog preprocessing Low rate (bandwidth)

(Mishali and Eldar, 10)
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Xampling of Radar Pulses

Xampling-based hardware for sub-
 Nyquist sampling of radar signals 

(Recent demo at RadarCon in 
collaboration with NI)

19

(Baransky et. al 12, Bar‐Ilan and Eldar 13)Sampling at 1/30 of the Nyquist rate
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~ ~~~

Rate should be 2L
 

if we have L
 

pulses
Naïve attempt: direct sampling at low rate
Most samples do not contain information!!

Mulitband problem: Rate should be 2NB
Most bands do not have energy –

 
which band should be sampled?

Difficulty
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Alias all energy to baseband before
 

sampling (analog projection)
Can sample at low rate
Resolve ambiguity in the digital domain

~ ~~~
Smear pulse before

 
sampling 

(analog projection –
 

bandwidth reduction)
Each sample contains energy
Resolve ambiguity in the digital domain

Use CS in digital, but set up problem in frequency

Intuitive Solution: Pre‐Processing
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Subspace techniques developed in the context of array 
processing (such as MUSIC, ESPRIT etc.)
Compressed sensing

Connections between CS and subspace methods: 
Malioutov, Cetin, and Willsky , Davies and Eldar , Lee and Bresler,, Kim, Lee and Ye, Fannjiang, Austin, Moses, 

 
Ash and Ertin

For nonlinear sampling:
Quadratic compressed sensing (Shechtman et. al 11, Eldar and Mendelson 12,

Ohlsson et. al 12, Janganathan 12)

More generally, nonlinear compressed sensing 
(Beck and Eldar 12, Bahman et. al 11)

Digital Recovery

We use CS only after sampling 
We set up problems in frequency and not in time 

Enables efficient hardware and low processing rates
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Nyquist: 2.4 GHz
 Sampling Rate: 280MHz

Nyquist rate: 2.4 GHz
Band occupancy: 120 MHz (~1/20 of the Nyquist range)
Sampling rate: 280 MHz (~1/9 of the Nyquist rate)

Rate proportional to the actual band occupancy!

Wideband receiver mode: 49 dB dynamic range, SNDR > 30 dB 
ADC mode: 1.2v peak-to-peak full-scale, 42 dB SNDR = 6.7 ENOB

(Mishali, Eldar, Dounaevsky, and Shoshan, 2010)

�

~ 1/9 of the Nyquist rate

Parameters:

Performance:
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Part 3:
Back to Radar

Joint work with Omer Bar-Ilan

1. O. Bar-Ilan and Y. C. Eldar, "Sub-Nyquist Radar via Doppler Focusing“
2. E.Baransky, G. Itzhak, I. Shmuel, N. Wagner, E. Shoshan and Y. C. Eldar, 
"A Sub-Nyquist Radar Prototype: Hardware and Algorithms"

http://arxiv.org/pdf/1211.0722v2.pdf
http://arxiv.org/pdf/1208.2515v2.pdf
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Demand for high resolution radar requires high bandwidth 
signals on the order of 100s Mhz to several Ghz
Classic matched filter processing requires sampling and 
processing the received signal at its Nyquist rate
Hardware excessive solutions, large computational costs
Previous CS works for this problem
Either do not address sampling
Require a prohibitive dictionary size: all delays and Dopplers
Or perform poorly with noise, clutter and close Dopplers

Xampling of Radar Pulses

We develop a sub-Nyquist radar prototype implemented in 
hardware which provides simple recovery and robustness to noise 

by performing beamforming on the low rate samples
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Doppler Focusing
Our sub-Nyquist method is based on the following concepts:

Finite Rate of Innovation (FRI)  (Vetterli et. al 02) enables modeling 
the analog signal with a small number of unknown parameters
Xampling allows for low sampling rate
Doppler Focusing is a method of beamforming the low rate samples

 in frequency which is numerically efficient and robust to noise
Optimal SNR scaling
CS size does not increase with number of pulses
No restrictions on the transmitter
Clutter rejection and the ability to handle large dynamic range 

FRI
Model

Xamplin
 g

Doppler
Focusing
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Radar Model

RCS

Range

Radial 

 
velocity

Tx

Rx
P=3
L=4
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Classic Pulse‐Doppler Receiver

Analog 
channel

A/D
(Nyquist 
rate Bh

 

)

Pulse 
matched 

filter

Doppler 
processing 

(FFT)

Envelope 
detector

Peak 
detection

Local interpolation 
(“super resolution”)

Delay-Doppler map

State of the art Bh

 

: 
GHz range

Δτ

 

= 1/Bh

Δω

 

= 2π/Pτ

Problem: 
better range resolution 

 larger bandwidth  need 
 faster A/D and more 

 computations

Solution:
Break the link between 

 signal bandwidth and 
 sampling rate! 
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How Do We Break the Link?

Theorem (Bar‐Ilan and Eldar 13)

We will achieve this rate using Xampling and Doppler focusing
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Fourier Processing

Unknown 

 
model 

 
parameters

Known 

 
CTFT

We will show that the parameters can be recovered robustly from 2L 
Fourier coefficients per frame!

Doppler focusing: low rate and robust processing from 2L
 

Fourier coeff.
Only 2L

 
samples in time are needed –

 
low rate
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Doppler Focusing: Idea
Transform a delay-Doppler

 
problem to a set of delay-only

 
problems with 

specific Doppler frequency

Advantages: 

Reduce a hard 2D problem into several easier 1D problems
Doppler focusing increases SNR by P

 
which is the optimal scaling

Improved resolution: Targets with different Doppler’s do not interfere 
Fast to compute (FFT), operates on low rate samples
Can use known delay estimation methods (CS, matrix pencil, MUSIC, etc’): No 
need to solve a 2D problem, typically few targets per frequency

Focused 

 
frequency
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Doppler Focusing: Math
Focusing for Doppler frequency ν: DFT over frame index

Complex sinusoid 
problem

Exponent sum
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Recovery using Compressed 
 Sensing

SNR 
increase

Only “in focus”

 
targets

|κ| Rows from a 

 
DFT matrix

Diagonal 

 
matrix
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Performance Guarantees

Theorem (Bar‐Ilan and Eldar  13)

Optimal noise robustness:

Minimal number of samples:

Theorem (Bar‐Ilan and Eldar  13)



35

Mid Summary
Take 2L Fourier coefficients in each frame
Use Doppler focusing to focus on specific Doppler values
For each detected Doppler solve CS problem with CS matrix given by 
chosen frequencies

Once delays are found, subtract them, and move on to next Doppler 
frequency

We sample in time not in frequency: How to obtain the Fourier coeff. 
from low rate samples?
Which frequencies should we choose?

Questions:
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Xampling  Scheme
Direct sampling at low rate is non-informative!

Solution:
 

Analog kernel prior to sampling to create aliasing

Single channel: only 2L
 

samples needed

( )x t FFT [ ]c k

Theorem (Tur, Eldar  and Friedman 11)
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Selecting The Active Frequencies
For good resolution and good CS properties we need wide frequency 

aperture

To avoid ambiguities we need at least two frequencies that are close to 

each other

Can randomly place frequencies over wide aperture

Our choice: Use a small set of bandpass filters spread randomly over a 

wide frequency range
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Examples of Filters
Sum of Sincs  filter –

 
compact support

Multichannel filter BPF4
BPF3

BPF2
Analog 
signal

Band-pass
Filter 1

Low rate 
ADC

Baseband down-convertor
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Xampling of Radar Pulses
analog filter banks ADCs

splitters

low pass filter

(Itzhak et. al. 2012  in collaboration with NI)

Demo of real-time radar at NI week
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Final Scheme

Low rate 
ADC

FFT for 
Fourier coeff.

Focusing coeff. 
using FFT

Spectral 
Analysis/CS 

solver

Analog 
signal

Choose 
focus

Analog 
processing
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Xampling of Radar Pulses
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Xampling of Radar Pulses
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Low SNR: ‐25 dB

Target delay and Doppler chosen randomly in the continuous 
unambiguous interval
L =5, PRI = 0.1 mSec, P = 100 pulses, bandwidth B = 10MHz
Nyquist rate generates 2000 samples / pulse, Xampling uses 200

 
samples

MF: 2/5 detections
Xampling: 4/5 detections

Sampling rate: 1/10 of the Nyquist rate
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Low SNR
Target delay and Doppler chosen randomly in the continuous 
unambiguous interval
L = 5, PRI = 0.1 mSec, P = 100 pulses, bandwidth B = 10MHz
Nyquist rate generates 2000 samples / pulse, Xampling uses 200

 
samples

Hit rate as a 
 function of SNR
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Controlling the Transmitter
When we can control the transmitter, waveforms better suited for

 our recovery method can be used
Since we perform sampling in frequency we use a waveform with its 
entire energy contents concentrated in these sampled frequencies
In this setting, Doppler focusing achieves better performance than a 
Nqyuist rate matched filter
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Target Dynamic Range
The detection subtraction step in Doppler focusing helps detection of 
closely spaced targets with large dynamic range
Here the left target is 20dB more powerful than the right target
MF processing at both Nyquist and one tenth the Nyquist rate 
recovers only one target while Doppler focusing recovers both
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Clutter
Clutter (land, sea, buildings…) size is usually much larger than target size 
–

 
potentially masking target echoes and causing misdetections

Clutter is not noise –
 

cannot be mitigated with coherent integration
Doppler focusing reduces the effects of clutter by creating isolation 
between signals with different Doppler frequencies

48

Nine targets and almost static clutter
Without windowing clutter sidelobes 
permeate the nonzero Doppler freq.
area and cause misdetections
With 40dB windowing five out of 
nine targets are recovered correctly
With 50dB windowing entire scene is 
detected correctly

Example:
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Previous works do not address sample rate reduction feasible in hardware
Various other works suffer from the following shortcomings:
Impose constraints on the radar transmitter and do not treat noise (e.g. 
Baraniuk & Steeghs)
Construct a CS dictionary with a column for each two dimensional

 
grid 

point causes dictionary explosion for any practical problem size (e.g. 
Herman and Strohmer, Zhang et. al)
Perform non-coherent integration over pulses, obtaining a sub-linear SNR 
improvement with P

 
(e.g. Bajwa, Gedalyahu & Eldar)

Previous Approaches
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Application to Ultrasound

Ultrasonic pulse is transmitted into the tissue
Pulse is conducted along a relatively narrow beam
Echoes are scattered by density and propagation-velocity perturbations
Reflections detected by multiple array elements.
Beamforming is applied –

 
digital processing , signals must first be 

sampled at Nyquist rate (~20MHz)

Individual traces 

Nyquist Sampling 
(~20MHz / element) Beamforming

Wagner, Eldar, and Friedman, ’11
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Ultrasound Results
Standard Imaging

We obtain a 32-fold reduction in sample rate and 1/16-fold reduction in 
processing rate
All digital processing is low rate as well
Almost same quality as full rate image

Xampled beamforming

3328 real-valued samples, per sensor 
per image line

360 complex-valued samples, per sensor per 
image line
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100 complex-valued samples, per sensor per 
image line

Xampled beamforming

~1/10 of the Nyquist rate ~1/32 of the Nyquist rate

Chernyakova and Eldar 13
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Sub‐Nyquist Ultrasound Demo

32-fold reduction in sampling 
rate while retaining sufficient 
image quality
Potential reduction in frame rate
Improvement of radial resolution 
by transition of wideband pulse

52

ultrasound machine

phantom

probe

Original image
time domain beamforming

Frequency domain beamforming
32 fold reduction in sampling rate
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Spatial CS in MIMO Radar

We can also use similar ideas in MIMO radar to reduce the number
 

of 
antennas
Using spatial Nyquist sampling the array aperture scales linearly with 
MN –

 
the number of transmit and receive antennas

Using CS we can get Nyquist resolution with MN scaling 
logarithmically

 
with aperture

Target k

k

Tx/Rx sensors

Plane 
wave

 1
, ,

G
 

Rossi, Haimovich and Eldar 13
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LTV System Identification

Sub‐Nyquist sampling of pulse streams can be used to 
 identify LTV systems using low time‐bandwidth product

Low rate sampling means the signal can be represented using fewer 
degrees of freedom
Can be applied to linear time-varying (LTV) system identification

Identify LTV systems from a single output using minimal resources

x(t)         x(t)         LTV system LTV system y(t)=H(x(t))y(t)=H(x(t))
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LTV Systems

Assumption:  

Underspread systems

Theorem (Kailath 62, Bello 63, Kozek and Pfander 05): LTV systems can 

be  identified only if they are underspread

delay-Doppler spreading function

Any LTV system can be written as (Kailath 62, Bello 63)

Difficulties:

Proposed algorithms require inputs with infinite bandwidth W and 

infinite time support T

W –
 

System resources,
 

T –
 

Time to identify targets

Can we identify a class of LTV systems with finite WT?
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Main Identification Result

Probing pulse: 

Theorem (Bajwa, Gedalyahu and Eldar 10):

WT is proportional only
 

to the number of 
 unknowns!
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Super‐resolution Radar

58

Setup
Nine targets
Max. delay = 10 micro secs
Max. Doppler = 10 kHz
W = 1.2 MHz
T = 0.48 milli secs
N = 48 pulses in x(t)
Sequence = random binary
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Compressed sampling and processing of many analog signals
Wideband sub-Nyquist samplers in hardware
Hardware prototype for sub-Nyquist radar processing
Good SNR, clutter rejection and dynamic range capabilities
Many applications and many research opportunities: extensions to

 other analog and digital problems, robustness, hardware …

Exploiting structure can lead to a new sampling 
 paradigm which combines analog + digital

Conclusions

More details in: 
M. Duarte and Y. C. Eldar,  “Structured Compressed Sensing: From Theory to Applications,”

 

Review for TSP.
M. Mishali and Y. C. Eldar, "Xampling: Compressed Sensing for Analog Signals", book chapter available at
http://webee.technion.ac.il/Sites/People/YoninaEldar/books.html
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Xampling Website
webee.technion.ac.il/people/YoninaEldar/xampling_top.html

Y. C. Eldar and G. Kutyniok, "Compressed Sensing: Theory and Applications", 
Cambridge University Press, 2012

http://webee.technion.ac.il/people/YoninaEldar/xampling_top.html
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Thank you
If you found this interesting …

Looking for a post-doc!
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