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The Separation Theorem:

rCircuit designer experts design samplers
at Nyquist rate or higher

*DSP/machine learning experts process the data

Today’s Paradigm

Typical first step: Throw away (or combine in a “smart” way
e.g. dimensionality reduction) much of the data ...

Logic: Exploit structure prevalent in most applications to reduce
DSP processing rates

DSP algorithms have a long history of leveraging structure:
MUSIC, model order selection, parametric estimation ...

However, the analog step is one of the costly steps

Can we use the structure to reduce sampling rate + first
DSP rate (data transfer, bus ...) as well?




Xampling:

Compression + Sampling

Exploit analog structure to improve processing performance:

F Reduce storage/reduce sampling rates

¥ Reduce processing rates

¥ Reduce power consumption

E  Increase resolution

B Improve denoising/deblurring capabilities
B Improved classification/source separation

Goal:

B Survey the main principles involved in exploiting analog structure
B Provide a variety of different applications and benefits
B Applications to radar



Compressed Sensing and Hardware

F Explosion of work on compressed sensing in digital applications
. Many papers describing models for CS of analog signals
E Have these models made it into wideband hardware?

B CSis a digital theory — treats vectors not analog inputs, processing
rates can be high, and are problematic in low SNR

Standard CS Analog CS

Input vector x analog signal x(t)

Sparsity few nonzero values ?

Measurement Random/det. matrix RF hardware

Recovery convex optimization need to recover analog input or
greedy methods specific data efficiently

We use CS only after sampling

Enables real hardware, low processing rates and low SNR




Talk Outline

P Part I: Motivation

F Part II: Xampling: Compressed sampling of
analog signals
¥ Part III: Applications to radar

B Pulse radar
¥ Ultrasound imaging

B LTV system identification




Part 1;
Motivation




Classical/Modern Sampling

¥ Sampling theory has developed tremendously in the 60+ years since Shannon

¥ Recovery methods have been developed for signals in arbitrary subspaces
(Unser,Aldroubi,Vaidyanathan,Blu,Jerri,Vetterli,Grochenig,Feichtinger,DeVore,Daubechies,Christensen,Eldar, ...)

Perfect Reconstruction in a Subspace

Sampling rate:
Degrees of freedom
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B Recovery from nonlinear samples as well (Dvorkind, Matusiak and Eldar 2008)
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Structured Analog Models

Multiband communication:
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Unknown carriers — non-subspace

¥ Can be viewed as/max—bandlimited (subspace)
¥ But sampling at rate > 2fmax is a waste of resources
B For wideband applications Nyquist sampling may be infeasible

Question:
How do we treat structured (non-subspace) models efficiently?




Cognitive Radio

¥ Cognitive radio mobiles utilize unused spectrum " holes”
¥ Spectral map is unknown a-priori, leading to a multiband model

Federal Communications Commission (FCC)
frequency allocation
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Licensed spectrum highly underused: E.g. TV white space, guard bands and more



Structured Analog Models

Medium identification:
e 1u1;1(:) entification Channel
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Similar problem arises in radar, UWB
communications, timing recovery problems ...

by L2 ts

Unknown delays — non-subspace

# Digital match filter or super-resolution ideas (MUSIC etc.) (Quazi, Brukstein,
Shan,Kailath, Pallas, Jouradin, Schmidt, Saarnisaari, Roy, Kumaresan, Tufts ...)

® But requires sampling at the Nyquist rate of g(?)

B The pulse shape is known — No need to waste sampling resources!

Question (same):
How do we treat structured (non-subspace) models efficiently?




Ultrasound

¥ High digital processing rates Tx pulse Ultrasonic probe

F Large power consumption

(Collaboration with General Electric
Israel)

Rx signal Unknowns
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B Echoes result from scattering in the tissue

B The image is formed by identifying the
scatterers




Processing Rates

To increase SNR the reflections are viewed by an antenna array
. .

SNR is improved through beamforming by introducing appropriate
time shifts to the received signals
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One image trace requires 128 samplers @ 20M, beamforming to 150
points, a total of 6.3x10° sums/frame

Compressed Beamforming




Resolution (1): Radar

E Principle: Y
1Q AL A
¥ A known pulse is transmitted gy/"‘?
E Reflections from targets are received = /
B Target’s ranges and velocities are identified

¥ Challenges:

B Targets can lie on an arbitrary grid @7
¥ Process of digitizing / / {C}

- loss of resolution in range-velocity domain ( y
E Wideband radar requires high rate sampling and processing ;//\&.\
which also results in long processing time =¥

05

X True Targets
QO MF peaks



Resolution (2): Subwavelength Imaging

(Collaboration with the groups of Segev and Cohen at the Technion)

Diffraction limit: Even a perfect optical imaging system has a
resolution limit determined by the wavelength A

. The smallest observable detail is larger than ~ A/2
B This results in image smearing

objective

sample

S A |aser beam

Sketch of an optical microscope:
the physics of EM waves acts

Nano-holes as an ideal low-pass filter :
as seen in seeftin

electronic microscope optical microscope

Blurred image




Imaging via “Sparse” Modeling
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Bajwa et al., “11

Recovery of
sub-wavelength images
from highly truncated
Fourier power spectrum

Szameit et al., Nature Photonics, “12
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Part 2:
Xampling




Xampling

(Mishali and Eldar, 10)
Xampling: Compression+Sampling
¥ Prior to analog sampling reduce bandwidth by projecting data
onto low dimensional analog space
¥ Creates aliasing of the data

¥ Sample the data at low rate in such a way that in the digital
domain we get a CS problem

¥ Typically process in frequency: low rate processing, robustness

EResults in low rate, low bandwidth, simple hardware and low
computational cost

Compressed
— WA B L0 — EESINIEN — recovery
processing

Analog preprocessing Low rate (bandwidth)



Xampling of Radar Pulses

Sampllng at 1/30 of the NquISt rate (Baransky et. al 12, Bar-Ilan and Eldar 13)

Xampling-based hardware for sub-
Nyquist sampling of radar signals
(Recent demo at RadarCon in
collaboration with NI)




Difficulty

kRate should be 2L if we have L pulses
¥ Naive attempt: direct sampling at low rate
¥ Most samples do not contain information!!
o -@ k =

¥Mulitband problem: Rate should be 2NB
®Most bands do not have energy — which band should be sampled?
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Intuitive Solution: Pre-Processing

F Smear pulse before sampling
(analog projection — bandwidth reduction)

¥ Each sample contains energy

¥ Resolve ambiguity in the digital domain

¥ Use CS in digital, but set up problem in frequency

¥ Alias all energy to baseband before sampling (analog projection)
B Can sample at low rate
F Resolve ambiguity in the digital domain

B
G-




Digital Recovery

E Subspace techniques developed in the context of array
processing (such as MUSIC, ESPRIT etc.)

¥ Compressed sensing

Connections between CS and subspace methods:

Malioutov, Cetin, and Willsky , Davies and Eldar , Lee and Bresler,, Kim, Lee and Ye, Fannjiang, Austin, Moses,
Ash and Ertin

For nonlinear sampling:

¥ Quadratic compressed sensing (shechtman et. al 11, Eldar and Mendelson 12,
Ohlsson et. al 12, Janganathan 12)

¥ More generally, nonlinear compressed sensing

(Beck and Eldar 12, Bahman et. al 11)

We use CS only after sampling
We set up problems in frequency and not in time

Enables etficient hardware and low processing rates




Nyquist: 2.4 GHz

Sampling Rate: 280MHz

(Mishali, Eldar, Dounaevsky, and Shoshan, 2010)

~1/9 of the Nyquist rate

Parameters:
B Nyquist rate: 2.4 GHz
B Band occupancy: 120 MHz (~1/20 of the Nyquist range)
B Sampling rate: 280 MHz (~1/9 of the Nyquist rate)
Rate proportional to the actual band occupancy!
Performance:
B Wideband receiver mode: 49 dB dynamic range, SNDR > 30 dB
B ADC mode: 1.2v peak-to-peak full-scale, 42 dB SNDR = 6.7 ENOB



Part 3;:
Back to Radar

Joint work with Omer Bar-Ilan

1. O. Bar-Ilan and Y. C. Eldar, "Sub-Nvquist Radar via Doppler Focusing”

2. E.Baransky, G. Itzhak, I. Shmuel, N. Wagner, E. Shoshan and Y. C. Eldar,
"A Sub-Nyquist Radar Prototype: Hardware and Algorithms"



http://arxiv.org/pdf/1211.0722v2.pdf
http://arxiv.org/pdf/1208.2515v2.pdf

Xampling of Radar Pulses

I Demand for high resolution radar requires high bandwidth
signals on the order of 100s Mhz to several Ghz

I Classic matched filter processing requires sampling and
processing the received signal at its Nyquist rate

¥ Hardware excessive solutions, large computational costs
¥ Previous CS works for this problem

B Either do not address sampling

B Require a prohibitive dictionary size: all delays and Dopplers
B Or perform poorly with noise, clutter and close Dopplers

We develop a sub-Nyquist radar prototype implemented in
hardware which provides simple recovery and robustness to noise

by performing beamforming on the low rate samples




Doppler Focusing

E Our sub-Nyquist method is based on the following concepts:

- Xamplin - Doppler

g Focusing

B Finite Rate of Innovation (FRI) (Vetterli et. al 02) enables modeling
the analog signal with a small number of unknown parameters

¥ Xampling allows for low sampling rate

B Doppler Focusing is a method of beamforming the low rate samples
in frequency which is numerically efficient and robust to noise
B Optimal SNR scaling
B CS size does not increase with number of pulses
B No restrictions on the transmitter
B Clutter rejection and the ability to handle large dynamic range



Radar Model

P—1 .,

P Transmitted pulse train: xp(t) = h(t — pt)
p=D Radial

/ velocity

P Reflections from L targets, each defined by {a;, 7;, w;}
_7

P Received signal: x(t) = X025 Y50 ayh(t — 1y — pr)e /@wPT

P=3 ‘ ‘ | ‘ ‘ I |
= & /\/\ /\/\ A.A A/\ /\A/\/\

¥ Assumptions on targets:

— “Far targets” — Swerling 0 targets” distance is large compared to the
distance change during observation interval, allows for constant ¢

— “No acceleration” — targets’ constant velocity allows for constant w,

— “Slow targets” — small target velocities allow for constant ; and
constant Doppler phase during pulse time



Classic Pulse-Doppler Receiver

Problem:
better range resolution -

lic

Aral . Doppler
g larger bandwidth = need processing

channel
faster A/D and more (FFT)
computations
e e e L

M Local interpolation
Break the link between (“super resolution”)
signal bandwidth and

sampling rate!

Envelope

detector

B Sample rate: pulse’s Nyquist rate By,

B Computational cost
B Matched filter: P convolutions of length 7B,

B Doppler processing: 1B, FFTs of length P




How Do We Break the Link?

I Use the FRI framework to model the analog input using a small number of
degrees of freedom

x(t) = TPG 2120 agh(t — 1 — pr)e JOwT W) ,=3L/Pt
I In practice, P is at least on the order of L in order to allow for L distinct
targets on Doppler grid
P Therefore we need =~ L* samples over the observation period

Theorem (Bar-Ilan and Eldar 13)

The number of samples required for perfect recovery of L targets when
there is no noise is at least 4L%. In addition:

e The number of samples per period is at least 2L;
e The number of periods P > 2L.

We will achieve this rate using Xampling and Doppler focusing




Fourier Processing

P Separate signal into frames: x(t) = X725 x, (t)

F Expresseach frame as a Fourier series: x,, (t) = Xkez cp[k] pJ2mkt/T

¥ Where c,|k] ——H(z—nk)z “laye Jm{”g j2mkty/t

b

Unknown

model
parameters

¥ All unknown parameters are embodied in the Fourier coefficients

We will show that the parameters can be recovered robustly from 2L

Fourier coetficients per frame!

B Doppler focusing: low rate and robust processing from 2L Fourier coeff.
B Only 2L samples in time are needed — low rate



Doppler Focusing: Idea

Transform a delay-Doppler problem to a set of delay-only problems with
specific Doppler frequency

Focused
FU frequency

Doppler

Advantages: ]

delay
Reduce a hard 2D problem into several easier 1D problems
Doppler focusing increases SNR by P which is the optimal scaling
Improved resolution: Targets with different Doppler’s do not interfere
Fast to compute (FFT), operates on low rate samples

Can use known delay estimation methods (CS, matrix pencil, MUSIC, etc’): No
need to solve a 2D problem, typically few targets per frequency



Doppler Focusing: Math

B Focusing for Doppler frequency v: DFT over frame index

P—1
Py lk] = Zcp [k]esvPT
p=0
1 21k O '
= — _— _sz?’
T ( T ) p e l ’
\ 1=0
Complex'sinusoid
problem

Exponent sum

Windowing Y523 e/ V-V0P7 [ p]

mitigates impact of “out-of-focus” targets:
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If the set of probed Doppler
frequencies lies on a uniform grid:

v, = 2nn/N,7,n=0,1,..,N,— 1
¥ Then U, [k] canbe created
efficiently using an FFT:

Wolk] 2 W, [k] = DFTy {c,[k]}




Recovery using Compressed

Sensing

¥ For each Doppler frequency we have

P .
Yylk] = 2 H2rk/7) Zypyesyicanpe e~ ™

Only “in focus”

targets

B This is a spectral analysis problem, for which 2L frequency samples are
enough to recover the unknown a’s and t’s if there is no noise: |k| > 2L

B We solve by choosing a set of coefficients

= [gbv[kg]...lpv[klkl_l]ff] e clxl

B Discretize the time delays: 7, = q;A; N; = {f‘
T

. L(=num. of
B AndusingCS W, = Hva<, targets)-sparse

vector of a's



Performance Guarantees

Optimal noise robustness:

Theorem (Bar-Ilan and Eldar 13)

Let y(t) = x(t) + w(t) denote a noisy radar signal where z(t) = Z;}:_”l h(t — pT)
and w(t) is white noise. Then Doppler focusing increases the SNR by a factor
of P which is the optimal SNR scaling obtained by the MF processing at the

Nyquist rate

Minimal number of samples:

Theorem (Bar-Ilan and Eldar 13)

The minimal number of samples required for perfect recovery of L targets using
Doppler focusing when there is no noise is 2L P



Mid Summary

B Take 2L Fourier coefficients in each frame

B Use Doppler focusing to focus on specific Doppler values

E For each detected Doppler solve CS problem with CS matrix given by
chosen frequencies

y = PVx

where P is the focusing gain, V is a partial Fourier matrix with the chosen
frequencies, and x is the sparse delay vector

B Once delays are found, subtract them, and move on to next Doppler
frequency

Questions:

B We sample in time not in frequency: How to obtain the Fourier coeff.
from low rate samples?
B Which frequencies should we choose?



Xampling Scheme

B Direct sampling at low rate is non-informative! /\ ”
B Solution: Analog kernel prior to sampling to create aliasirlm)

B Single channel: only 2L samples needed

¥(1) —  s*(=t) +~"—=s FFT +— c[k]

Theorem (Tur, Eldar and Friedman 11)
If the filter s*(—t) satisfies :

0 w=2nk/T,k & K
S*(w) = nonzero w = 2wk/T,k €K
arbitrary otherwise,

then c[k| are the desired Fourier coefficients

Here K are the desired set of Fourier coefficients



Selecting The Active Frequencies

B For good resolution and good CS properties we need wide frequency
aperture

I To avoid ambiguities we need at least two frequencies that are close to
each other

I Can randomly place frequencies over wide aperture

E Our choice: Use a small set of bandpass filters spread randomly over a

wide frequency range

i 1 B

fi f2 f3 fa



Examples of Filters

B Sum of Sincs filter — compact support

0.3

I e filer gith

T [Lirsts of 1]

B Multichannel filter

Baseband down-convertor



Xampling of Radar Pulses

(Itzhak et. al. 2012 in collaboration with NI) analog filter b anks ADCS
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Final Scheme

| FFT for
Fourier coeff.

Spectral
Analysis/CS
solver

Choose [ Focusing coeff. Py k]
focus using FFT




Xampling of Radar Pulses
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Xampling of Radar Pulses
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Low SNR: -25 dB

Sampling rate: 1/10 of the Nyquist rate
¥ Target delay and Doppler chosen
unambiguous interval

randomly in the continuous

¥ L =5, PRI=0.1 mSec, P =100 pulses, bandwidth B = 10MHz
¥ Nyquist rate generates 2000 samples / pulse Xamplmg uses 200 samples
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Xampling: 4/5 detections
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3

4000 b

Real

+  Matched Filter (Myquist) :
Matched Filter (Sub-Myguist) i
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¥ Target delay and Doppler chosen randomly in the continuous
unambiguous interval
¥ L =5 PRI=0.1 mSec, P =100 pulses, bandwidth B =10MHz

¥ Nyquist rate generates 2000 samples / pulse, Xampling uses 200 samples

Hit Rate
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Controlling the Transmitter

P When we can control the transmitter, waveforms better suited for
our recovery method can be used

¥ Since we perform sampling in frequency we use a waveform with its
entire energy contents concentrated in these sampled frequencies

E In this setting, Doppler focusing achieves better performance than a
Nqyuist rate matched filter

Hit rate
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Target Dynamic Range

I The detection subtraction step in Doppler focusing helps detection of
closely spaced targets with large dynamic range

¥ Here the left target is 20dB more powerful than the right target

¥ MF processing at both Nyquist and one tenth the Nyquist rate
recovers only one target while Doppler focusing recovers both

=2 P=100 Avgy. Sample SNR=-8/-28.0[dB]
UnderSampling ratio sample/pulse=(10.0,1.0)
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Clutter

¥ Clutter (land, sea, buildings...) size is usually much larger than target size
— potentially masking target echoes and causing misdetections
¥ Clutter is not noise — cannot be mitigated with coherent integration

Doppler focusing reduces the effects of clutter by creating isolation

between signals with different Doppler frequencies

Example:

B Nine targets and almost static clutter

¥ Without windowing clutter sidelobes

permeate the nonzero Doppler freq.

area and cause misdetections

¥ With 40dB windowing five out of
nine targets are recovered correctly "t
B With 50dB windowing entire scene is T

detected correctly
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Previous Approaches

Previous works do not address sample rate reduction feasible in hardware
Various other works suffer from the following shortcomings:

Impose constraints on the radar transmitter and do not treat noise (e.g.
Baraniuk & Steeghs)

Construct a CS dictionary with a column for each two dimensional grid
point causes dictionary explosion for any practical problem size (e.g.
Herman and Strohmer, Zhang et. al)

Perform non-coherent integration over pulses, obtaining a sub-linear SNR
improvement with P (e.g. Bajwa, Gedalyahu & Eldar)




Application to Ultrasound

Wagner, Eldar, and Friedman, "11
Ultrasonic pulse is transmitted into the tissue

Pulse is conducted along a relatively narrow beam
Echoes are scattered by density and propagation-velocity perturbations
Reflections detected by multiple array elements.

Beamforming is applied — digital processing , signals must first be
sampled at Nyquist rate (~20MHz)

Individual traces @m (t)

Nyquist Sampling
(~20MHz / element)
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Ultrasound Results

Chernyakova and Eldar 13
Standard Imaging Xampled beamforming Xampled beamforming
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3328 real-valued samples, per sensor 360 complex-valued samples, per sensor per 100 complex-valued samples, per sensor per
per image line image line image line

~1/10 of the Nyquist rate ~1/32 of the Nyquist rate

B We obtain a 32-fold reduction in sample rate and 1/16-fold reduction in
processing rate

B All digital processing is low rate as well
B Almost same quality as full rate image



Sub-Nyquist Ultrasound Demc

32-fold reduction in sampling ~ phantom
rate while retaining sufficient

image quality

Potential reduction in frame rate
Improvement of radial resolution

by transition of wideband pulse

ultrasound machine

Original image Frequency domain beamforming
time domain beamforming 32 fold reduction in sampling rate
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Spatial CS in MIMO Radar

Rossi, Haimovich and Eldar 13

I We can also use similar ideas in MIMO radar to reduce the number of
antennas

¥ Using spatial Nyquist sampling the array aperture scales linearly with
MN - the number of transmit and receive antennas

B Using CS we can get Nyquist resolution with MN scaling
logarithmically with aperture

Target k o ’¢G}

000 ooo,oooooooo‘oooo

Plane
wave
J—o o oo —o——o

Tx/Rx sensors




LTV System Identification

I Low rate sampling means the signal can be represented using fewer

degrees of freedom

¥ Can be applied to linear time-varying (LTV) system identification

x( t)ﬁ> LTV system

> y(H=H(x(t))

Identify LTV systems from a single output using minimal resources

Sub-Nyquist sampling of pulse streams can be used to
identify LTV systems using low time-bandwidth product




LTV Systems

¥ Any LTV system can be written as (Kailath 62, Bello 63)

y(t) = J, fT(t — 1)e~ 12t drdy
delay-Doppler spreading function

¥ Assumption: a(v,7) =0, |v|<w,|T[< T

¥ Underspread systems A = 47 < 1
ETheorem (Kailath 62, Bello 63, Kozek and Pfander 05): LTV systems can
be identified only if they are underspread
Difficulties:
E Proposed algorithms require inputs with infinite bandwidth W and
infinite time support T

B W - System resources, T — Time to identify targets

Can we identify a class of LTV systems with finite WT?




Main Identification Result

¥ Probing pulse: z(t) = S gt —nTy), 1<t<T
g g(t) is a pulse of bandwidth W that is (essentially) supported on [0, 7j]

g T, is a length-N probing sequence, with N =T /Ty o« WT

Theorem (Bajwa, Gedalyahu and Eldar 10):

An underspread paramteric LTV system can be identified from a single
observation, with infinite resolution, and in polynomial time if |z,,| > 0 and

WT > 8rK K,

WT is proportional only to the number of
unknowns!



Super-resolution Radar

Setup 05 _ : : .
c ® g ® True Targets
I Nine targets O Our Method
¥ Max. delay = 10 micro secs g : 2 |
¥ Max. Doppler = 10 kHz A T T S
L
r W=1.2MHz 2 .
¥ T =0.48 milli secs = ®
; : ®
E N =48 pulses in x(t) o 5 5 |
F Sequence = random binary % 0.2 0.4 06 0.8 1
0.5
5 0
o
3
O
05 0.2 0.4 0.6 0.8
Delay (x t__)



Conclusions

Compressed sampling and processing of many analog signals
Wideband sub-Nyquist samplers in hardware

Hardware prototype for sub-Nyquist radar processing

Good SNR, clutter rejection and dynamic range capabilities

Many applications and many research opportunities: extensions to
other analog and digital problems, robustness, hardware ...

Exploiting structure can lead to a new sampling

paradigm which combines analog + digital

More details in:

M. Duarte and Y. C. Eldar, “Structured Compressed Sensing: From Theory to Applications,” Review for TSP.
M. Mishali and Y. C. Eldar, "Xampling: Compressed Sensing for Analog Signals", book chapter available at
http://webee.technion.ac.il/Sites/People/YoninaEldar/books.html



Xampling Website

webee.technion.ac.il/people/YoninaFldar/xampling top.html
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