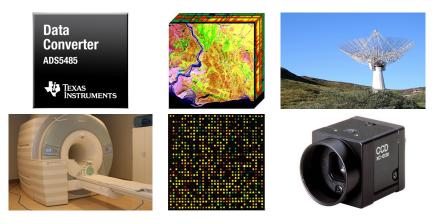
Compressed Subspace Matching, Blind Deconvolution, and Multichannel Sampling

Justin Romberg Georgia Tech, ECE

CoSeRa 2013 September 19, 2013 Bonn, Germany

Linear systems of equations are ubiquitous



All of these can be abstracted to

$$Ax = y$$

What we know about solving linear systems

Observe:

$$oldsymbol{y} = oldsymbol{A} oldsymbol{x}_0 + \mathsf{noise}$$

Classical: If $A^{H}A$ is *well conditioned* then we can stably estimate x_0 using *least-squares*.

Sparse: If A keeps S-sparse signals separated then we can stably estimate sparse x_0 using ℓ_1 minimization.

Low rank: If A keeps rank-R matrices separated then we can stably estimate low-rank x_0 using nuclear norm minimization.

The last two can be achieved for *underdetermined* A as long as its rows are *global and diverse*. This can be achieved by injecting *randomness* into A.

Optimization programs for solving linear systems

Observe:

$$oldsymbol{y} = oldsymbol{A} oldsymbol{x}_0 + \mathsf{noise}$$

Classical: *least-squares*:

$$\min_{\boldsymbol{x}} \|\boldsymbol{y} - \boldsymbol{A} \boldsymbol{x}\|_2^2$$

Sparse: ℓ_1 minimization:

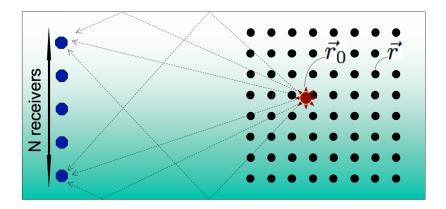
$$\min_{\boldsymbol{x}} \ \|\boldsymbol{y} - \boldsymbol{A} \boldsymbol{x}\|_2^2 + \tau \|\boldsymbol{x}\|_1$$
 where $\|\boldsymbol{x}\|_1 = \mathsf{sum} \ \mathsf{of} \ \mathsf{magnitudes}$

Low rank: nuclear norm minimization:

$$\label{eq:min_x} \min_{{\boldsymbol X}} ~ \|{\boldsymbol y} - A({\boldsymbol X})\|_2^2 + \tau \|{\boldsymbol X}\|_*$$
 where $\|{\boldsymbol X}\|_* =$ sum of singular values

- Compressive subspace matching on the continuum
- Ø Blind deconvolution using convex programming
- Multichannel compressive sampling

Source localization



We observe a narrowband source emitting from (unknown) location $\vec{r_0}$:

$$\boldsymbol{y} = \alpha \boldsymbol{G}(\vec{r_0}) + \text{noise}, \quad \boldsymbol{y} \in \mathbb{C}^N$$

Goal: estimate $\vec{r_0}$ using only *implicit* knowledge of the channel G

Matched field processing



Given observations \boldsymbol{y} , estimate $\vec{r_0}$ by "matching against the field":

$$\hat{r} = \arg\min_{\vec{r}} \min_{\beta \in \mathbb{C}} \|\boldsymbol{y} - \beta \boldsymbol{G}(\vec{r})\|^2 = \max_{\vec{r}} \frac{|\langle \boldsymbol{y}, \boldsymbol{G}(\vec{r}) \rangle|^2}{\|\boldsymbol{G}(\vec{r})\|^2} \approx |\langle \boldsymbol{y}, \boldsymbol{G}(\vec{r}) \rangle|^2$$

We do not have direct access to G, but can calculate $\langle y, G(\vec{r}) \rangle$ for all \vec{r} using *time-reversal*

Coded simulations

 Pre-compute the responses to a series of *randomly and simultaneously* activated sources along the receiver array

$$\boldsymbol{b}_1 = \boldsymbol{G}^{\mathrm{H}} \boldsymbol{\phi}_1, \ \ \boldsymbol{b}_2 = \boldsymbol{G}^{\mathrm{H}} \boldsymbol{\phi}_2, \ \ \ldots \ \ \boldsymbol{b}_M = \boldsymbol{G}^{\mathrm{H}} \boldsymbol{\phi}_M,$$

where the ϕ_m are random vectors

- Stack up the $oldsymbol{b}_m^{
 m H}$ to form the matrix $oldsymbol{\Phi} oldsymbol{G}$
- Given the observations $oldsymbol{y}$, code them to form $oldsymbol{\Phi}oldsymbol{y}$, and solve

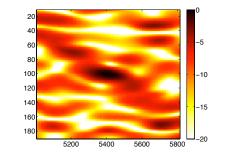
$$\hat{r}_{cs} = rg\min_{ec{r}}\min_{eta \in \mathbb{C}} \| \mathbf{\Phi} oldsymbol{y} - eta \mathbf{\Phi} oldsymbol{G}(ec{r}) \|_2^2 = rg\max_{ec{r}} rac{|\langle \mathbf{\Phi} oldsymbol{y}, \mathbf{\Phi} oldsymbol{G}(ec{r})
angle|^2}{\| \mathbf{\Phi} oldsymbol{G}(ec{r}) \|^2}$$

Compressive ambiguity functions

20 40 60 80 100 120 140 160 180 5200
5400
5600
5800
-0

ambiguity function $(\boldsymbol{G}^{\mathrm{H}}\boldsymbol{y})(\vec{r})$

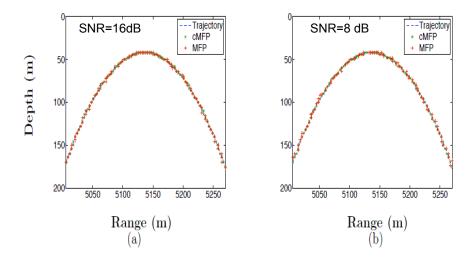
compressed amb func $({\pmb G}^{\rm H} {\pmb \Phi}^{\rm H} {\pmb \Phi} {\pmb y})({\vec r})$



M = 10 (compare to 37 receivers)

- The compressed ambiguity function is a *random process* whose mean is the true ambiguity function
- For very modest M, these two functions peak in the same place

Numerical simulation: source tracking



16x compression, very little loss in performance

Basic problem:

We have a collection of subspaces $\{S_{\theta}, \ \theta \in \Theta\}$.

Given $oldsymbol{y}=\Phi x_0$, we like to know which subspace is the best "fit" for x_0

Applications:

- source localization
- Ø direction of arrival estimation in array processing
- pulse detection / time-of-arrival estimation from compressed samples ("smashed filtering")

Union of subspaces

Basic problem:

We have a collection of subspaces $\{\mathcal{S}_{ heta}, \; heta \in \Theta\}$ in \mathbb{R}^N .

Given $oldsymbol{y}= \Phi x_0$, we like to know which subspace is the best "fit" for x_0

Two questions:

• When can we distinguish $x_1 \in S_{\theta_1}$ and $x_2 \in S_{\theta_2}$ when viewed through Φ ? Stable embedding:

$$(1-\delta) \| \boldsymbol{x}_1 - \boldsymbol{x}_2 \|_2^2 \leq \| \boldsymbol{\Phi} \boldsymbol{x}_1 - \boldsymbol{\Phi} \boldsymbol{x}_2 \|_2^2 \leq (1+\delta) \| \boldsymbol{x}_1 - \boldsymbol{x}_2 \|_2^2$$

When can we find subspace most closely aligned with x₀ when viewed through Φ?

Let $\mathcal{Q} \subset \mathbb{R}^N$. For Φ random, when do we have

$$(1-\delta) \| \boldsymbol{x}_1 - \boldsymbol{x}_2 \|_2^2 \leq \| \boldsymbol{\Phi} \boldsymbol{x}_1 - \boldsymbol{\Phi} \boldsymbol{x}_2 \|_2^2 \leq (1+\delta) \| \boldsymbol{x}_1 - \boldsymbol{x}_2 \|_2^2,$$

for all $x_1, x_2 \in \mathcal{Q}$ with appropriately high probability?

• Q is a finite set of size |Q| = Q. Then

$$\delta \lesssim \sqrt{\frac{2\log Q}{M}}$$

So we can take

 $M\gtrsim 2\log Q$

This is known as the Johnson-Lindenstrauss Lemma (1984).

Let $\mathcal{Q} \subset \mathbb{R}^N$. For Φ random, when do we have

$$(1-\delta) \| \boldsymbol{x}_1 - \boldsymbol{x}_2 \|_2^2 \leq \| \boldsymbol{\Phi} \boldsymbol{x}_1 - \boldsymbol{\Phi} \boldsymbol{x}_2 \|_2^2 \leq (1+\delta) \| \boldsymbol{x}_1 - \boldsymbol{x}_2 \|_2^2,$$

for all $x_1, x_2 \in \mathcal{Q}$ with appropriately high probability?

• Q is a subspace of dimension K. Then δ is directly related to the *singular values* of Φ , and

$$\delta \lesssim \sqrt{\frac{K}{M}},$$

so we can take

$$M \gtrsim K$$

This is a "classical" result by Marchenko, Pastur (1960s), and later Szarek (1990s).

Let $\mathcal{Q} \subset \mathbb{R}^N$. For Φ random, when do we have

$$(1-\delta) \| m{x}_1 - m{x}_2 \|_2^2 \leq \| m{\Phi} m{x}_1 - m{\Phi} m{x}_2 \|_2^2 \leq (1+\delta) \| m{x}_1 - m{x}_2 \|_2^2,$$

for all $x_1, x_2 \in \mathcal{Q}$ with appropriately high probability?

• Q is a finite collection of subspaces of dimension K, $\{S_{\theta}, \theta \in \Theta$. Then

$$\delta \lesssim \sqrt{\frac{2K + 2\log|\Theta|}{M}}$$

Example: sparse recovery for compressive sensing, $|\Theta| = {N \choose K} \sim e^{K \log(N/K)}$, and so we can take

$$M \gtrsim 2K \log(N/K)$$

(Candes, Tao; Rudleson, Vershynin; Davenport et al., mid-2000s)

Let $\mathcal{Q} \subset \mathbb{R}^N$. For Φ random, when do we have

$$(1-\delta) \| \boldsymbol{x}_1 - \boldsymbol{x}_2 \|_2^2 \leq \| \boldsymbol{\Phi} \boldsymbol{x}_1 - \boldsymbol{\Phi} \boldsymbol{x}_2 \|_2^2 \leq (1+\delta) \| \boldsymbol{x}_1 - \boldsymbol{x}_2 \|_2^2,$$

for all ${m x}_1, {m x}_2 \in {\mathcal Q}$ with appropriately high probability?

• Q is a smooth manifold of dimension K. Then

$$\delta \lesssim \sqrt{\frac{2K \cdot f(\text{curvature, volume,etc.})}{M}}$$

(Wakin et al, Woodruff, Yap et al, ..., recent)

Let $\mathcal{Q} \subset \mathbb{R}^N$. For Φ random, when do we have

$$(1-\delta) \| m{x}_1 - m{x}_2 \|_2^2 \leq \| m{\Phi} m{x}_1 - m{\Phi} m{x}_2 \|_2^2 \leq (1+\delta) \| m{x}_1 - m{x}_2 \|_2^2,$$

for all $x_1, x_2 \in \mathcal{Q}$ with appropriately high probability?

• Q is a infinite collection of subspaces of dimension K, $\{S_{\theta} : \theta \in \Theta\}$. We can take

$$\delta \lesssim \sqrt{\frac{2K\Delta}{M}}$$

where Δ is a measure of *geometrical complexity* of Θ .

In typical cases of interest, $\Delta \sim \log(\max(K, \text{"effective dimension"}))$. (Mantzel and R. '13)

Geometrical complexity

balls of radius ϵ τ Covering numbers: $N(T, d, \epsilon) =$ size of smallest ϵ -cover

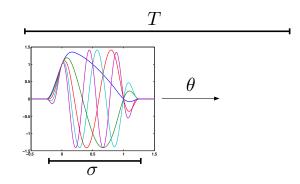
We have $T = \{S_{\theta}\}_{\theta}$, $d(S_{\theta_1}, S_{\theta_2}) = \|P_{\theta_1} - P_{\theta_2}\|$

Then Δ depends on how fast the cover grows as $\epsilon \to 0,$ characterized by N_0,d such that

$$N(T, d, \epsilon) \leq N_0 \left(\frac{1}{\epsilon}\right)^d$$

Example: Shiftable subspaces

Smooth window, modulated by K different cosines (LOT). Width of functions = σ Shift over interval of length T



In this case, we have

 $\Delta \sim \log(K) + \log(T/\sigma)$

Compressive subspace matching

 $\begin{array}{l} \text{Collection of subspaces } \{\mathcal{S}_{\theta}, \theta \in \Theta\} \\ \text{Observe } \boldsymbol{y} = \boldsymbol{\Phi} \boldsymbol{x}, \text{ where } \boldsymbol{x} \in \mathcal{S}_{\theta_0} \end{array}$

Full observation: Solve

$$ar{ heta} = rg\min_{ heta \in \Theta} \|oldsymbol{x} - oldsymbol{P}_{ heta}oldsymbol{x}\|_2^2$$

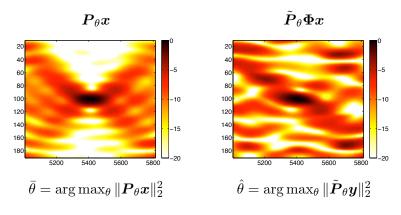
where $\boldsymbol{P}_{\theta} = \boldsymbol{V}_{\theta} \boldsymbol{V}_{\theta}^{\mathrm{T}}$ is the projector onto \mathcal{S}_{θ} .

Compressed observation: Solve

$$\hat{ heta} = rg\min_{ heta \in \Theta} \ \|m{y} - ilde{m{P}}_{ heta} m{y}\|_2^2$$

where $ilde{m{P}}_{ heta} = m{\Phi} m{V}_{ heta} (m{V}_{ heta}^{\mathrm{T}} m{\Phi}^{\mathrm{T}} m{\Phi} m{V}_{ heta})^{-1} m{V}_{ heta}^{\mathrm{T}} m{\Phi}^{\mathrm{T}}$

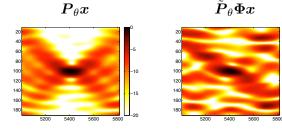
Compressive subspace matching



Performance gap:

$$\hat{E} - \bar{E} = \| \boldsymbol{P}_{\bar{\theta}} \boldsymbol{x} \|_2^2 - \| \boldsymbol{P}_{\hat{\theta}} \boldsymbol{x} \|_2^2$$

Compressive subspace matching



Performance gap (for $\|\boldsymbol{x}\|_2 = 1$):

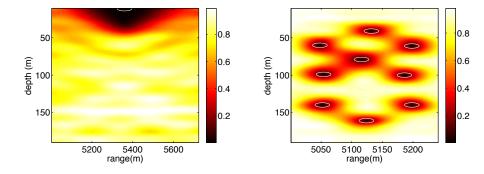
$$\hat{E} - \bar{E} \le \sqrt{\frac{K\Delta}{M}}$$

where Δ is the same geometric constant as before.

Compressive subspace matching is effective for

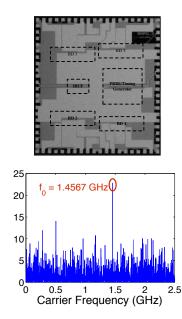
 $M \gtrsim K \log (\max(K, \text{"fill factor"}))$

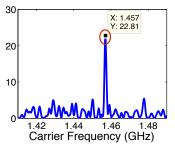
Underwater acoustics: multiple sources



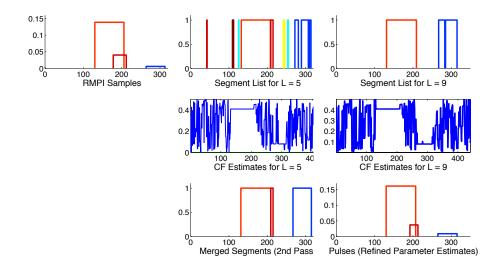
Right: strong source at surface washes out 9 weaker sources Left: locating then nulling out strong source flushed out weaker ones

Frequency estimation on actual hardware



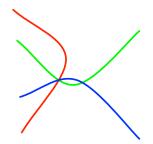


Pulse detection and segmentation



Blind deconvolution using convex programming

Bilinear equations



Bilinear equations contain unknown terms multiplied by one another

$$u_1v_1 + 5u_1v_2 + 7u_2v_3 = -12$$
$$u_3v_1 - 9u_2v_2 + 4u_3v_2 = 2$$
$$u_1v_2 - 6u_1v_3 - u_3v_3 = 7$$

Their nonlinearity makes them trickier to solve, and the computational framework is nowhere nearly as strong as for linear equations

Bilinear equations

Simple (but only recently appreciated) observation: Systems of bilinear equations, e. g.

 $u_1v_1 + 5u_1v_2 + 7u_2v_3 = -12$ $u_3v_1 - 9u_2v_2 + 4u_3v_2 = 2$

can be recast as linear system of equations on a matrix that has rank 1:

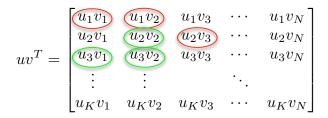
$$uv^{T} = \begin{bmatrix} u_{1}v_{1} & u_{1}v_{2} & u_{1}v_{3} & \cdots & u_{1}v_{N} \\ u_{2}v_{1} & u_{2}v_{2} & u_{2}v_{3} & \cdots & u_{2}v_{N} \\ u_{3}v_{1} & u_{3}v_{2} & u_{3}v_{3} & \cdots & u_{3}v_{N} \\ \vdots & \vdots & \ddots & \\ u_{K}v_{1} & u_{K}v_{2} & u_{K}v_{3} & \cdots & u_{K}v_{N} \end{bmatrix}$$

Bilinear equations

Simple (but only recently appreciated) observation: Systems of bilinear equations, e. g.

 $u_1v_1 + 5u_1v_2 + 7u_2v_3 = -12$ $u_3v_1 - 9u_2v_2 + 4u_3v_2 = 2$

can be recast as linear system of equations on a matrix that has rank 1:

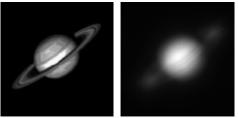


Compressive (low rank) recovery \Rightarrow

"Generic" quadratic systems with cN equations and N unknowns can be solved using nuclear norm minimization

Blind deconvolution

image deblurring



(image courtesy of Hao, Lu, Qinzhang)

multipath in wireless comm

(image from Wikimedia Commons)

We observe

$$y[\ell] = \sum_{n} s[n] h[\ell - n]$$

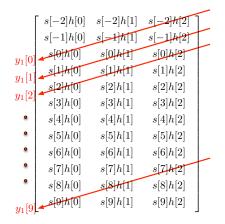
and want to "untangle" s and h.

Blind deconvolution as low rank recovery

Each sample of y = s * h is a bilinear combination of the unknowns,

$$y[\ell] = \sum_{n} s[n]h[\ell - n]$$

and is a *linear* combination of sh^{T} :



Blind deconvolution as low rank recovery

Given y = s * h, it is impossible to untangle s and h unless we make some *structural assumptions*

Structure: s and h live in known subspaces of \mathbb{R}^L ; we can write

$$s = Bu,$$
 $h = Cv,$ $B : L \times K,$ $C : L \times N$

where *B* and *C* are matrices whose columns form bases for these spaces We can now write blind deconvolution as a *linear inverse problem with a rank contraint*:

$$oldsymbol{y} = \mathcal{A}(oldsymbol{X}_0), \hspace{1em}$$
 where $oldsymbol{X}_0 = oldsymbol{s}oldsymbol{h}^{\mathrm{T}}$ has rank=1

The action of $\mathcal{A}(\cdot)$ can be broken down into three linear steps:

$$oldsymbol{X}_0 \ o \ oldsymbol{B} oldsymbol{X}_0 \ o \ oldsymbol{B} oldsymbol{X}_0 \ o \ oldsymbol{B} oldsymbol{X}_0 oldsymbol{C}^{\mathrm{T}} \ o \ {\sf take}$$
 skew-diagonal sums

Blind deconvolution theoretical results

We observe

$$egin{aligned} oldsymbol{y} &= oldsymbol{s} st oldsymbol{h}, &oldsymbol{h} = oldsymbol{B}oldsymbol{w}, &oldsymbol{s} = oldsymbol{C}oldsymbol{x} &= oldsymbol{C}oldsymbol{x}$$

and then solve

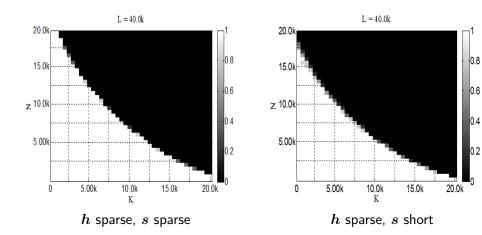
$$\min_{\boldsymbol{X}} \|\boldsymbol{X}\|_*$$
 subject to $\mathcal{A}(\boldsymbol{X}) = \boldsymbol{y}.$

Ahmed, Recht, R, '12: If B is "incoherent" in the Fourier domain, and C is randomly chosen, then we will recover $X_0 = sh^{T}$ exactly (with high probability) when

$$L \geq \text{Const} \cdot (K+N) \log^3(KN)$$

Numerical results

white = 100% success, black = 0% success

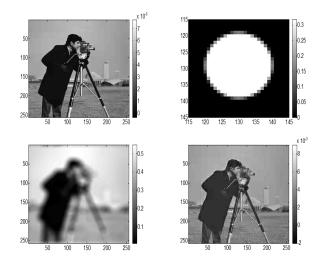


In the cases above, we can take

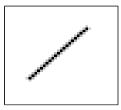
 $(N+K) \lesssim L/3$

Numerical results

Unknown image with known support in the wavelet domain, Unknown blurring kernel with known support in spatial domain



Numerical results



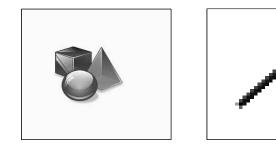
image

blurring kernel

blurred image

Numerical results

Oracle recovery

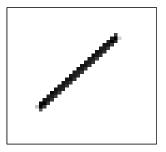


recovered image

recovered kernel

Numerical results

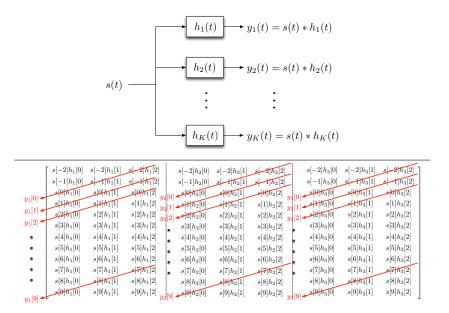
Adaptive recovery



recovered image

recovered kernel

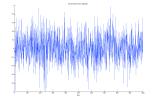
Passive imaging with multiple channels

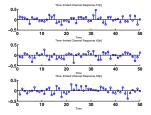


Recovery results

Source / output length: 1000 Number of channels: 100 Channel impulse response length: 50

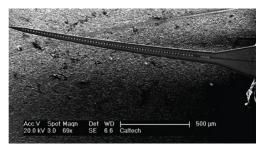
Original:



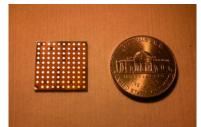


Sampling correlated signals

Sensor arrays

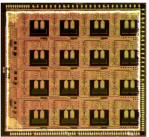


Caltech multielectrode



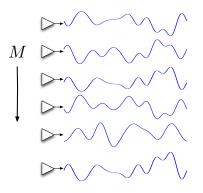
IBM phased array

MIT nanophotonic array



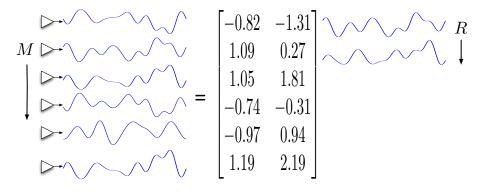
UCSD phased

Sampling correlated signals



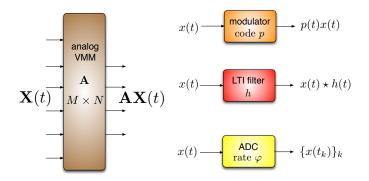
- Goal: acquire an *ensemble* of M signals
- \bullet Bandlimited to $W\!/2$
- "Correlated" $\rightarrow M$ signals are \approx linear combinations of R signals

Sampling correlated signals



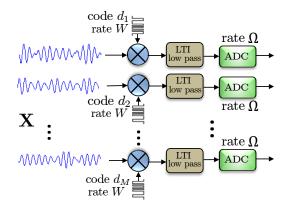
- \bullet Goal: acquire an *ensemble* of M signals
- Bandlimited to W/2
- "Correlated" $\rightarrow M$ signals are \approx linear combinations of R signals

Components



- Analog vector-matrix multiplier spreads energy across channels
- Modulators spread energy across frequency
- Filters spread energy in one channel across time
- ADCs take samples

Sampling using the random demodulator



• Instead of running each ADC at rate $\Omega \geq W,$ we can take

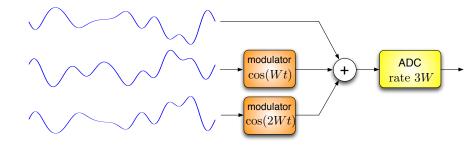
$$\Omega \gtrsim \frac{R}{M}W$$

to within logarithmic factors

Multiplexing onto one channel

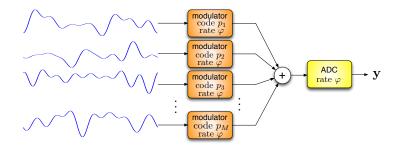
• We can always combine *M* channels into 1 by *multiplexing* in either time or frequency

Frequency multiplexer:



• Replace M ADCs running at rate W with $1 \ \rm ADC$ at rate MW

Compressive multiplexing



• If the signals are somewhat spread out in time, then the ADC and modulators can run at rate

$$\varphi \gtrsim RW$$

to within logarithmic factors

References

- W. Mantzel, K. Sabra, J. Romberg, "Compressive matched-field processing," J. Acoustic Soc. Amer., July 2012.
- W. Mantzel and J. Romberg, "Compressed subspace matching on the continuum," manuscript to be submitted to IEEE Trans. PAMI, 2013.
- A. Ahmed and J. Romberg, "Compressive Sampling of Correlated Signals," Manuscript in preparation.
 Preliminary version at IEEE Asilomar Conference on Signals, Systems, and Computers, October 2011.
- A. Ahmed and J. Romberg, "Compressive Multiplexers for Correlated Signals," submitted to *IEEE Transactions on Information Theory*, August 2013.
- A. Ahmed, B. Recht, and J. Romberg, "Blind Deconvolution using Convex Programming," to appear in *IEEE Transactions on Information Theory*, late 2013.

http://users.ece.gatech.edu/~justin/Publications.html