Compressed Subspace Matching, Blind Deconvolution, and Multichannel Sampling

Justin Romberg
Georgia Tech, ECE

CoSeRa 2013
September 19, 2013
Bonn, Germany

Linear systems of equations are ubiquitous

All of these can be abstracted to

$$
\boldsymbol{A x}=\boldsymbol{y}
$$

What we know about solving linear systems

Observe:

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}_{0}+\text { noise }
$$

Classical: If $\boldsymbol{A}^{\mathrm{H}} \boldsymbol{A}$ is well conditioned then we can stably estimate \boldsymbol{x}_{0} using least-squares.

Sparse: If \boldsymbol{A} keeps S-sparse signals separated then we can stably estimate sparse \boldsymbol{x}_{0} using ℓ_{1} minimization.

Low rank: If \boldsymbol{A} keeps rank- R matrices separated then we can stably estimate low-rank \boldsymbol{x}_{0} using nuclear norm minimization.

The last two can be achieved for underdetermined \boldsymbol{A} as long as its rows are global and diverse. This can be achieved by injecting randomness into \boldsymbol{A}.

Optimization programs for solving linear systems

Observe:

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}_{0}+\text { noise }
$$

Classical: least-squares:

$$
\min _{\boldsymbol{x}}\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}
$$

Sparse: ℓ_{1} minimization:

$$
\min _{\boldsymbol{x}}\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}+\tau\|\boldsymbol{x}\|_{1}
$$

where $\|\boldsymbol{x}\|_{1}=$ sum of magnitudes

Low rank: nuclear norm minimization:

$$
\min _{\boldsymbol{X}}\|\boldsymbol{y}-A(\boldsymbol{X})\|_{2}^{2}+\tau\|\boldsymbol{X}\|_{*}
$$

where $\|\boldsymbol{X}\|_{*}=$ sum of singular values

Agenda for today

(1) Compressive subspace matching on the continuum
(2) Blind deconvolution using convex programming
(3) Multichannel compressive sampling

Source localization

We observe a narrowband source emitting from (unknown) location $\overrightarrow{r_{0}}$:

$$
\boldsymbol{y}=\alpha \boldsymbol{G}\left(\overrightarrow{r_{0}}\right)+\text { noise }, \quad \boldsymbol{y} \in \mathbb{C}^{N}
$$

Goal: estimate $\overrightarrow{r_{0}}$ using only implicit knowledge of the channel \boldsymbol{G}

Matched field processing

Given observations \boldsymbol{y}, estimate $\overrightarrow{r_{0}}$ by "matching against the field":

$$
\hat{r}=\arg \min _{\vec{r}} \min _{\beta \in \mathbb{C}}\|\boldsymbol{y}-\beta \boldsymbol{G}(\vec{r})\|^{2}=\max _{\vec{r}} \frac{|\langle\boldsymbol{y}, \boldsymbol{G}(\vec{r})\rangle|^{2}}{\|\boldsymbol{G}(\vec{r})\|^{2}} \approx|\langle\boldsymbol{y}, \boldsymbol{G}(\vec{r})\rangle|^{2}
$$

We do not have direct access to \boldsymbol{G}, but can calculate $\langle\boldsymbol{y}, \boldsymbol{G}(\vec{r})\rangle$ for all \vec{r} using time-reversal

Coded simulations

- Pre-compute the responses to a series of randomly and simultaneously activated sources along the receiver array

$$
\boldsymbol{b}_{1}=\boldsymbol{G}^{\mathrm{H}} \boldsymbol{\phi}_{1}, \quad \boldsymbol{b}_{2}=\boldsymbol{G}^{\mathrm{H}} \boldsymbol{\phi}_{2}, \quad \ldots \quad \boldsymbol{b}_{M}=\boldsymbol{G}^{\mathrm{H}} \boldsymbol{\phi}_{M}
$$

where the ϕ_{m} are random vectors

- Stack up the $\boldsymbol{b}_{m}^{\mathrm{H}}$ to form the matrix $\boldsymbol{\Phi} \boldsymbol{G}$
- Given the observations \boldsymbol{y}, code them to form $\boldsymbol{\Phi} \boldsymbol{y}$, and solve

$$
\hat{r}_{c s}=\arg \min _{\vec{r}} \min _{\beta \in \mathbb{C}}\|\boldsymbol{\Phi} \boldsymbol{y}-\beta \boldsymbol{\Phi} \boldsymbol{G}(\vec{r})\|_{2}^{2}=\arg \max _{\vec{r}} \frac{|\langle\boldsymbol{\Phi} \boldsymbol{y}, \boldsymbol{\Phi} \boldsymbol{G}(\vec{r})\rangle|^{2}}{\|\boldsymbol{\Phi} \boldsymbol{G}(\vec{r})\|^{2}}
$$

Compressive ambiguity functions

 compressed amb func $\left(\boldsymbol{G}^{\mathrm{H}} \boldsymbol{\Phi}^{\mathrm{H}} \boldsymbol{\Phi} \boldsymbol{y}\right)(\vec{r})$

$$
M=10 \text { (compare to } 37 \text { receivers) }
$$

- The compressed ambiguity function is a random process whose mean is the true ambiguity function
- For very modest M, these two functions peak in the same place

Numerical simulation: source tracking

$16 x$ compression, very little loss in performance

Union of subspaces

Basic problem:

We have a collection of subspaces $\left\{\mathcal{S}_{\theta}, \theta \in \Theta\right\}$.
Given $\boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{x}_{0}$, we like to know which subspace is the best "fit" for \boldsymbol{x}_{0}

Applications:

(1) source localization
(2) direction of arrival estimation in array processing
(3) pulse detection / time-of-arrival estimation from compressed samples ("smashed filtering")

Union of subspaces

Basic problem:

We have a collection of subspaces $\left\{\mathcal{S}_{\theta}, \theta \in \Theta\right\}$ in \mathbb{R}^{N}.
Given $\boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{x}_{0}$, we like to know which subspace is the best "fit" for \boldsymbol{x}_{0}

Two questions:

(1) When can we distinguish $x_{1} \in \mathcal{S}_{\theta_{1}}$ and $x_{2} \in \mathcal{S}_{\theta_{2}}$ when viewed through $\boldsymbol{\Phi}$? Stable embedding:

$$
(1-\delta)\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{2}^{2} \leq\left\|\boldsymbol{\Phi} \boldsymbol{x}_{1}-\boldsymbol{\Phi} \boldsymbol{x}_{2}\right\|_{2}^{2} \leq(1+\delta)\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{2}^{2}
$$

(2) When can we find subspace most closely aligned with \boldsymbol{x}_{0} when viewed through $\boldsymbol{\Phi}$?

Embedding subsets of \mathbb{R}^{N}

Let $\mathcal{Q} \subset \mathbb{R}^{N}$. For $\boldsymbol{\Phi}$ random, when do we have

$$
(1-\delta)\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{2}^{2} \leq\left\|\boldsymbol{\Phi} \boldsymbol{x}_{1}-\boldsymbol{\Phi} \boldsymbol{x}_{2}\right\|_{2}^{2} \leq(1+\delta)\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{2}^{2}
$$

for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathcal{Q}$ with appropriately high probability?

- \mathcal{Q} is a finite set of size $|\mathcal{Q}|=Q$. Then

$$
\delta \lesssim \sqrt{\frac{2 \log Q}{M}}
$$

So we can take

$$
M \gtrsim 2 \log Q
$$

This is known as the Johnson-Lindenstrauss Lemma (1984).

Embedding subsets of \mathbb{R}^{N}

Let $\mathcal{Q} \subset \mathbb{R}^{N}$. For $\boldsymbol{\Phi}$ random, when do we have

$$
(1-\delta)\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{2}^{2} \leq\left\|\boldsymbol{\Phi} \boldsymbol{x}_{1}-\boldsymbol{\Phi} \boldsymbol{x}_{2}\right\|_{2}^{2} \leq(1+\delta)\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{2}^{2}
$$

for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathcal{Q}$ with appropriately high probability?

- \mathcal{Q} is a subspace of dimension K. Then δ is directly related to the singular values of $\boldsymbol{\Phi}$, and

$$
\delta \lesssim \sqrt{\frac{K}{M}}
$$

so we can take

$$
M \gtrsim K
$$

This is a "classical" result by Marchenko, Pastur (1960s), and later Szarek (1990s).

Embedding subsets of \mathbb{R}^{N}

Let $\mathcal{Q} \subset \mathbb{R}^{N}$. For $\boldsymbol{\Phi}$ random, when do we have

$$
(1-\delta)\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{2}^{2} \leq\left\|\boldsymbol{\Phi} \boldsymbol{x}_{1}-\boldsymbol{\Phi} \boldsymbol{x}_{2}\right\|_{2}^{2} \leq(1+\delta)\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{2}^{2}
$$

for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathcal{Q}$ with appropriately high probability?

- \mathcal{Q} is a finite collection of subspaces of dimension $K,\left\{\mathcal{S}_{\theta}, \theta \in \Theta\right.$. Then

$$
\delta \lesssim \sqrt{\frac{2 K+2 \log |\Theta|}{M}}
$$

Example: sparse recovery for compressive sensing, $|\Theta|=\binom{N}{K} \sim e^{K \log (N / K)}$, and so we can take

$$
M \gtrsim 2 K \log (N / K)
$$

(Candes,Tao; Rudleson, Vershynin; Davenport et al., mid-2000s)

Embedding subsets of \mathbb{R}^{N}

Let $\mathcal{Q} \subset \mathbb{R}^{N}$. For $\boldsymbol{\Phi}$ random, when do we have

$$
(1-\delta)\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{2}^{2} \leq\left\|\boldsymbol{\Phi} \boldsymbol{x}_{1}-\boldsymbol{\Phi} \boldsymbol{x}_{2}\right\|_{2}^{2} \leq(1+\delta)\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{2}^{2}
$$

for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathcal{Q}$ with appropriately high probability?

- \mathcal{Q} is a smooth manifold of dimension K. Then

$$
\delta \lesssim \sqrt{\frac{2 K \cdot f(\text { curvature, volume,etc. })}{M}}
$$

(Wakin et al, Woodruff, Yap et al, ..., recent)

Embedding subsets of \mathbb{R}^{N}

Let $\mathcal{Q} \subset \mathbb{R}^{N}$. For $\boldsymbol{\Phi}$ random, when do we have

$$
(1-\delta)\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{2}^{2} \leq\left\|\boldsymbol{\Phi} \boldsymbol{x}_{1}-\boldsymbol{\Phi} \boldsymbol{x}_{2}\right\|_{2}^{2} \leq(1+\delta)\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{2}^{2}
$$

for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathcal{Q}$ with appropriately high probability?

- \mathcal{Q} is a infinite collection of subspaces of dimension $K,\left\{\mathcal{S}_{\theta}: \theta \in \Theta\right\}$. We can take

$$
\delta \lesssim \sqrt{\frac{2 K \Delta}{M}}
$$

where Δ is a measure of geometrical complexity of Θ.
In typical cases of interest, $\Delta \sim \log (\max (K$, "effective dimension" $)$).
(Mantzel and R. '13)

Geometrical complexity

Covering numbers:
$N(T, d, \epsilon)=$ size of smallest ϵ-cover

We have $T=\left\{\mathcal{S}_{\theta}\right\}_{\theta}, \quad d\left(\mathcal{S}_{\theta_{1}}, \mathcal{S}_{\theta_{2}}\right)=\left\|\boldsymbol{P}_{\theta_{1}}-\boldsymbol{P}_{\theta_{2}}\right\|$
Then Δ depends on how fast the cover grows as $\epsilon \rightarrow 0$, characterized by N_{0}, d such that

$$
N(T, d, \epsilon) \leq N_{0}\left(\frac{1}{\epsilon}\right)^{d}
$$

Example: Shiftable subspaces

Smooth window, modulated by K different cosines (LOT).
Width of functions $=\sigma$
Shift over interval of length T

In this case, we have

$$
\Delta \sim \log (K)+\log (T / \sigma)
$$

Compressive subspace matching

Collection of subspaces $\left\{\mathcal{S}_{\theta}, \theta \in \Theta\right\}$
Observe $\boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{x}$, where $\boldsymbol{x} \in \mathcal{S}_{\theta_{0}}$

Full observation: Solve

$$
\bar{\theta}=\arg \min _{\theta \in \Theta}\left\|\boldsymbol{x}-\boldsymbol{P}_{\theta} \boldsymbol{x}\right\|_{2}^{2}
$$

where $\boldsymbol{P}_{\theta}=\boldsymbol{V}_{\theta} \boldsymbol{V}_{\theta}^{\mathrm{T}}$ is the projector onto \mathcal{S}_{θ}.
Compressed observation: Solve

$$
\hat{\theta}=\arg \min _{\theta \in \Theta}\left\|\boldsymbol{y}-\tilde{\boldsymbol{P}}_{\theta} \boldsymbol{y}\right\|_{2}^{2}
$$

where $\tilde{\boldsymbol{P}}_{\theta}=\boldsymbol{\Phi} \boldsymbol{V}_{\theta}\left(\boldsymbol{V}_{\theta}^{\mathrm{T}} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{V}_{\theta}\right)^{-1} \boldsymbol{V}_{\theta}^{\mathrm{T}} \boldsymbol{\Phi}^{\mathrm{T}}$

Compressive subspace matching

Performance gap:

$$
\hat{E}-\bar{E}=\left\|\boldsymbol{P}_{\bar{\theta}} \boldsymbol{x}\right\|_{2}^{2}-\left\|\boldsymbol{P}_{\hat{\theta}} \boldsymbol{x}\right\|_{2}^{2}
$$

Compressive subspace matching

$\boldsymbol{P}_{\theta} \boldsymbol{x}$

$\tilde{\boldsymbol{P}}_{\theta} \boldsymbol{\Phi} \boldsymbol{x}$

Performance gap (for $\|\boldsymbol{x}\|_{2}=1$):

$$
\hat{E}-\bar{E} \leq \sqrt{\frac{K \Delta}{M}}
$$

where Δ is the same geometric constant as before.
Compressive subspace matching is effective for

$$
M \gtrsim K \log (\max (K, \text { "fill factor" }))
$$

Underwater acoustics: multiple sources

Right: strong source at surface washes out 9 weaker sources
Left: locating then nulling out strong source flushed out weaker ones

Frequency estimation on actual hardware

Pulse detection and segmentation

Blind deconvolution using convex programming

Bilinear equations

Bilinear equations contain unknown terms multiplied by one another

$$
\begin{gathered}
u_{1} v_{1}+5 u_{1} v_{2}+7 u_{2} v_{3}=-12 \\
u_{3} v_{1}-9 u_{2} v_{2}+4 u_{3} v_{2}=2 \\
u_{1} v_{2}-6 u_{1} v_{3}-u_{3} v_{3}=7
\end{gathered}
$$

Their nonlinearity makes them trickier to solve, and the computational framework is nowhere nearly as strong as for linear equations

Bilinear equations

Simple (but only recently appreciated) observation:
Systems of bilinear equations, e. g.

$$
\begin{gathered}
u_{1} v_{1}+5 u_{1} v_{2}+7 u_{2} v_{3}=-12 \\
u_{3} v_{1}-9 u_{2} v_{2}+4 u_{3} v_{2}=2
\end{gathered}
$$

can be recast as linear system of equations on a matrix that has rank 1:

$$
u v^{T}=\left[\begin{array}{ccccc}
u_{1} v_{1} & u_{1} v_{2} & u_{1} v_{3} & \cdots & u_{1} v_{N} \\
u_{2} v_{1} & u_{2} v_{2} & u_{2} v_{3} & \cdots & u_{2} v_{N} \\
u_{3} v_{1} & u_{3} v_{2} & u_{3} v_{3} & \cdots & u_{3} v_{N} \\
\vdots & \vdots & & \ddots & \\
u_{K} v_{1} & u_{K} v_{2} & u_{K} v_{3} & \cdots & u_{K} v_{N}
\end{array}\right]
$$

Bilinear equations

Simple (but only recently appreciated) observation:
Systems of bilinear equations, e. g.

$$
\begin{gathered}
u_{1} v_{1}+5 u_{1} v_{2}+7 u_{2} v_{3}=-12 \\
u_{3} v_{1}-9 u_{2} v_{2}+4 u_{3} v_{2}=2
\end{gathered}
$$

can be recast as linear system of equations on a matrix that has rank 1:

$$
u v^{T}=\left[\begin{array}{ccccc}
u_{1} v_{1} & u_{1} v_{2} & u_{1} v_{3} & \cdots & u_{1} v_{N} \\
u_{2} v_{1} & u_{2} v_{2} & u_{2} v_{3} & \cdots & u_{2} v_{N} \\
u_{3} v_{1} & u_{3} v_{2} & u_{3} v_{3} & \cdots & u_{3} v_{N} \\
\vdots & \vdots & & \ddots & \\
u_{K} v_{1} & u_{K} v_{2} & u_{K} v_{3} & \cdots & u_{K} v_{N}
\end{array}\right]
$$

Compressive (low rank) recovery \Rightarrow
"Generic" quadratic systems with $c N$ equations and N unknowns can be solved using nuclear norm minimization

Blind deconvolution

(image courtesy of Hao, Lu, Qinzhang)
multipath in wireless comm

(image from Wikimedia Commons)

We observe

$$
y[\ell]=\sum_{n} s[n] h[\ell-n]
$$

and want to "untangle" \boldsymbol{s} and \boldsymbol{h}.

Blind deconvolution as low rank recovery

Each sample of $\boldsymbol{y}=\boldsymbol{s} * \boldsymbol{h}$ is a bilinear combination of the unknowns,

$$
y[\ell]=\sum_{n} s[n] h[\ell-n]
$$

and is a linear combination of $\boldsymbol{s} \boldsymbol{h}^{\mathrm{T}}$:

Blind deconvolution as low rank recovery

Given $\boldsymbol{y}=\boldsymbol{s} * \boldsymbol{h}$, it is impossible to untangle \boldsymbol{s} and \boldsymbol{h} unless we make some structural assumptions

Structure: \boldsymbol{s} and \boldsymbol{h} live in known subspaces of \mathbb{R}^{L}; we can write

$$
\boldsymbol{s}=\boldsymbol{B} \boldsymbol{u}, \quad \boldsymbol{h}=\boldsymbol{C} \boldsymbol{v}, \quad B: L \times K, \quad C: L \times N
$$

where B and \boldsymbol{C} are matrices whose columns form bases for these spaces
We can now write blind deconvolution as a linear inverse problem with a rank contraint:

$$
\boldsymbol{y}=\mathcal{A}\left(\boldsymbol{X}_{0}\right), \quad \text { where } \boldsymbol{X}_{0}=\boldsymbol{s} \boldsymbol{h}^{\mathrm{T}} \text { has rank }=1
$$

The action of $\mathcal{A}(\cdot)$ can be broken down into three linear steps:

$$
\boldsymbol{X}_{0} \rightarrow \boldsymbol{B} \boldsymbol{X}_{0} \rightarrow \boldsymbol{B} \boldsymbol{X}_{0} \boldsymbol{C}^{\mathrm{T}} \rightarrow \text { take skew-diagonal sums }
$$

Blind deconvolution theoretical results

We observe

$$
\begin{aligned}
\boldsymbol{y} & =\boldsymbol{s} * \boldsymbol{h}, \quad \boldsymbol{h}=\boldsymbol{B} \boldsymbol{w}, \quad \boldsymbol{s}=\boldsymbol{C} \boldsymbol{x} \\
& =\mathcal{A}\left(\boldsymbol{w} \boldsymbol{x}^{\mathrm{T}}\right), \quad \boldsymbol{w} \in \mathbb{R}^{K}, \quad \boldsymbol{x} \in \mathbb{R}^{N},
\end{aligned}
$$

and then solve

$$
\min _{\boldsymbol{X}}\|\boldsymbol{X}\|_{*} \text { subject to } \mathcal{A}(\boldsymbol{X})=\boldsymbol{y}
$$

Ahmed, Recht, R, '12:
If \boldsymbol{B} is "incoherent" in the Fourier domain, and \boldsymbol{C} is randomly chosen, then we will recover $\boldsymbol{X}_{0}=\boldsymbol{s} \boldsymbol{h}^{\mathrm{T}}$ exactly (with high probability) when

$$
L \geq \text { Const } \cdot(K+N) \log ^{3}(K N)
$$

Numerical results

white $=100 \%$ success, black $=0 \%$ success

h sparse, s sparse

h sparse, s short

In the cases above, we can take

$$
(N+K) \lesssim L / 3
$$

Numerical results

Unknown image with known support in the wavelet domain, Unknown blurring kernel with known support in spatial domain

Numerical results

image

blurring kernel

blurred image

Numerical results

Oracle recovery

recovered image

recovered kernel

Numerical results

Adaptive recovery

recovered image

recovered kernel

Passive imaging with multiple channels

Recovery results

Source / output length: 1000
Number of channels: 100
Channel impulse response length: 50

Original:

Sampling correlated signals

Sensor arrays

Caltech multielectrode

MIT nanophotonic array

IBM phased array

UCSD phased

Sampling correlated signals

- Goal: acquire an ensemble of M signals
- Bandlimited to $W / 2$
- "Correlated" $\rightarrow M$ signals are \approx linear combinations of R signals

Sampling correlated signals

(~~~

- Goal: acquire an ensemble of M signals
- Bandlimited to $W / 2$
- "Correlated" $\rightarrow M$ signals are \approx linear combinations of R signals

Components

- Analog vector-matrix multiplier spreads energy across channels
- Modulators spread energy across frequency
- Filters spread energy in one channel across time
- ADCs take samples

Sampling using the random demodulator

- Instead of running each ADC at rate $\Omega \geq W$, we can take

$$
\Omega \gtrsim \frac{R}{M} W
$$

to within logarithmic factors

Multiplexing onto one channel

- We can always combine M channels into 1 by multiplexing in either time or frequency

Frequency multiplexer:

- Replace M ADCs running at rate W with 1 ADC at rate $M W$

Compressive multiplexing

- If the signals are somewhat spread out in time, then the ADC and modulators can run at rate

$$
\varphi \gtrsim R W
$$

to within logarithmic factors

References

- W. Mantzel, K. Sabra, J. Romberg, "Compressive matched-field processing," J. Acoustic Soc. Amer., July 2012.
- W. Mantzel and J. Romberg, "Compressed subspace matching on the continuum," manuscript to be submitted to IEEE Trans. PAMI, 2013.
- A. Ahmed and J. Romberg, "Compressive Sampling of Correlated Signals," Manuscript in preparation.
Preliminary version at IEEE Asilomar Conference on Signals, Systems, and Computers, October 2011.
- A. Ahmed and J. Romberg, "Compressive Multiplexers for Correlated Signals," submitted to IEEE Transactions on Information Theory, August 2013.
- A. Ahmed, B. Recht, and J. Romberg, "Blind Deconvolution using Convex Programming," to appear in IEEE Transactions on Information Theory, late 2013.
http://users.ece.gatech.edu/~justin/Publications.html

