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Linear systems of equations are ubiquitous

All of these can be abstracted to

Ax = y



What we know about solving linear systems

Observe:
y = Ax0 + noise

Classical: If AHA is well conditioned then we can stably estimate x0

using least-squares.

Sparse: If A keeps S-sparse signals separated then we can stably
estimate sparse x0 using `1 minimization.

Low rank: If A keeps rank-R matrices separated then we can stably
estimate low-rank x0 using nuclear norm minimization.

The last two can be achieved for underdetermined A as long as its rows are
global and diverse. This can be achieved by injecting randomness into A.



Optimization programs for solving linear systems

Observe:
y = Ax0 + noise

Classical: least-squares:
min
x
‖y −Ax‖22

Sparse: `1 minimization:

min
x
‖y −Ax‖22 + τ‖x‖1

where ‖x‖1 = sum of magnitudes

Low rank: nuclear norm minimization:

min
X
‖y −A(X)‖22 + τ‖X‖∗

where ‖X‖∗ = sum of singular values



Agenda for today

1 Compressive subspace matching on the continuum

2 Blind deconvolution using convex programming

3 Multichannel compressive sampling



Source localization

We observe a narrowband source emitting from (unknown) location ~r0:

y = αG(~r0) + noise, y ∈ CN

Goal: estimate ~r0 using only implicit knowledge of the channel G



Matched field processing

|〈y,G(~r)〉|2
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Given observations y, estimate ~r0 by “matching against the field”:

r̂ = arg min
~r

min
β∈C
‖y − βG(~r)‖2 = max

~r

|〈y,G(~r)〉|2
‖G(~r)‖2 ≈ |〈y,G(~r)〉|2

We do not have direct access to G, but can calculate 〈y,G(~r)〉 for all ~r
using time-reversal



Coded simulations

Pre-compute the responses to a series of randomly and simultaneously
activated sources along the receiver array

b1 = GHφ1, b2 = GHφ2, . . . bM = GHφM ,

where the φm are random vectors

Stack up the bH
m to form the matrix ΦG

Given the observations y, code them to form Φy, and solve

r̂cs = arg min
~r

min
β∈C
‖Φy − βΦG(~r)‖22 = arg max

~r

|〈Φy,ΦG(~r)〉|2
‖ΦG(~r)‖2



Compressive ambiguity functions

ambiguity function (GHy)(~r) compressed amb func (GHΦHΦy)(~r)
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M = 10 (compare to 37 receivers)

The compressed ambiguity function is a random process whose mean
is the true ambiguity function

For very modest M , these two functions peak in the same place



Numerical simulation: source tracking
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•  Source tracking over 100 different positions 
•  Broadband Coherent C-MFP uses M=2 measurements per frequency 

SNR=16dB SNR=8 dB 

16x compression, very little loss in performance



Union of subspaces

Basic problem:
We have a collection of subspaces {Sθ, θ ∈ Θ}.
Given y = Φx0, we like to know which subspace is the best “fit” for x0

Applications:

1 source localization

2 direction of arrival estimation in array processing

3 pulse detection / time-of-arrival estimation from compressed samples
(“smashed filtering”)



Union of subspaces

Basic problem:
We have a collection of subspaces {Sθ, θ ∈ Θ} in RN .
Given y = Φx0, we like to know which subspace is the best “fit” for x0

Two questions:

1 When can we distinguish x1 ∈ Sθ1 and x2 ∈ Sθ2 when viewed
through Φ? Stable embedding:

(1− δ)‖x1 − x2‖22 ≤ ‖Φx1 −Φx2‖22 ≤ (1 + δ)‖x1 − x2‖22

2 When can we find subspace most closely aligned with x0 when viewed
through Φ?



Embedding subsets of RN

Let Q ⊂ RN . For Φ random, when do we have

(1− δ)‖x1 − x2‖22 ≤ ‖Φx1 −Φx2‖22 ≤ (1 + δ)‖x1 − x2‖22,

for all x1,x2 ∈ Q with appropriately high probability?

Q is a finite set of size |Q| = Q. Then

δ .

√
2 logQ

M
.

So we can take
M & 2 logQ

This is known as the Johnson-Lindenstrauss Lemma (1984).



Embedding subsets of RN

Let Q ⊂ RN . For Φ random, when do we have

(1− δ)‖x1 − x2‖22 ≤ ‖Φx1 −Φx2‖22 ≤ (1 + δ)‖x1 − x2‖22,

for all x1,x2 ∈ Q with appropriately high probability?

Q is a subspace of dimension K. Then δ is directly related to the
singular values of Φ, and

δ .

√
K

M
,

so we can take
M & K

This is a “classical” result by Marchenko, Pastur (1960s), and later
Szarek (1990s).



Embedding subsets of RN

Let Q ⊂ RN . For Φ random, when do we have

(1− δ)‖x1 − x2‖22 ≤ ‖Φx1 −Φx2‖22 ≤ (1 + δ)‖x1 − x2‖22,

for all x1,x2 ∈ Q with appropriately high probability?

Q is a finite collection of subspaces of dimension K, {Sθ, θ ∈ Θ.
Then

δ .

√
2K + 2 log |Θ|

M

Example: sparse recovery for compressive sensing,
|Θ| =

(
N
K

)
∼ eK log(N/K), and so we can take

M & 2K log(N/K)

(Candes,Tao; Rudleson, Vershynin; Davenport et al., mid-2000s)



Embedding subsets of RN

Let Q ⊂ RN . For Φ random, when do we have

(1− δ)‖x1 − x2‖22 ≤ ‖Φx1 −Φx2‖22 ≤ (1 + δ)‖x1 − x2‖22,

for all x1,x2 ∈ Q with appropriately high probability?

Q is a smooth manifold of dimension K. Then

δ .

√
2K · f(curvature, volume,etc.)

M

(Wakin et al, Woodruff, Yap et al, . . ., recent)



Embedding subsets of RN

Let Q ⊂ RN . For Φ random, when do we have

(1− δ)‖x1 − x2‖22 ≤ ‖Φx1 −Φx2‖22 ≤ (1 + δ)‖x1 − x2‖22,

for all x1,x2 ∈ Q with appropriately high probability?

Q is a infinite collection of subspaces of dimension K, {Sθ : θ ∈ Θ}.
We can take

δ .

√
2K∆

M

where ∆ is a measure of geometrical complexity of Θ.

In typical cases of interest, ∆ ∼ log (max(K, “effective dimension”)).

(Mantzel and R. ’13)



Geometrical complexity

Covering numbers:

N(T, d, ε) = size of smallest ε-cover of T in metric d(·, ·)

T

balls of radius �

We have T = {Sθ}θ, d(Sθ1 ,Sθ2) = ‖P θ1 − P θ2‖

Then ∆ depends on how fast the cover grows as ε→ 0,
characterized by N0, d such that

N(T, d, ε) ≤ N0

(
1

ε

)d



Example: Shiftable subspaces

Smooth window, modulated by K different cosines (LOT).
Width of functions = σ
Shift over interval of length T
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In this case, we have

∆ ∼ log(K) + log(T/σ)



Compressive subspace matching

Collection of subspaces {Sθ, θ ∈ Θ}
Observe y = Φx, where x ∈ Sθ0

Full observation: Solve

θ̄ = arg min
θ∈Θ

‖x− P θx‖22

where P θ = V θV
T
θ is the projector onto Sθ.

Compressed observation: Solve

θ̂ = arg min
θ∈Θ

‖y − P̃ θy‖22

where P̃ θ = ΦV θ(V
T
θΦ

TΦV θ)
−1V T

θΦ
T



Compressive subspace matching

P θx P̃ θΦx
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θ̄ = arg maxθ ‖P θx‖22 θ̂ = arg maxθ ‖P̃ θy‖22

Performance gap:
Ê − Ē = ‖P θ̄x‖22 − ‖P θ̂x‖22



Compressive subspace matching

P θx P̃ θΦx
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Performance gap (for ‖x‖2 = 1):

Ê − Ē ≤
√
K∆

M

where ∆ is the same geometric constant as before.

Compressive subspace matching is effective for

M & K log (max(K, “fill factor”))



Underwater acoustics: multiple sources

range(m)

de
pt

h 
(m

)

 

 

5200 5400 5600

50

100

150 0.2

0.4

0.6

0.8

range(m)
de

pt
h 

(m
)

 

 

5050 5100 5150 5200

50

100

150 0.2

0.4

0.6

0.8

Right: strong source at surface washes out 9 weaker sources

Left: locating then nulling out strong source flushed out weaker ones



Frequency estimation on actual hardware

PRBS/Timing 
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Pulse detection and segmentation
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Blind deconvolution using convex programming



Bilinear equations

Bilinear equations contain unknown terms multiplied by one another

u1v1 + 5u1v2 + 7u2v3 = −12

u3v1 − 9u2v2 + 4u3v2 = 2

u1v2 − 6u1v3 − u3v3 = 7

Their nonlinearity makes them trickier to solve, and the computational
framework is nowhere nearly as strong as for linear equations



Bilinear equations

Simple (but only recently appreciated) observation:
Systems of bilinear equations, e. g.

u1v1 + 5u1v2 + 7u2v3 = −12

u3v1 − 9u2v2 + 4u3v2 = 2

can be recast as linear system of equations on a matrix that has rank 1:

uvT =

2
666664

u1v1 u1v2 u1v3 · · · u1vN

u2v1 u2v2 u2v3 · · · u2vN

u3v1 u3v2 u3v3 · · · u3vN

...
...

. . .

uKv1 uKv2 uKv3 · · · uKvN

3
777775



Bilinear equations

Simple (but only recently appreciated) observation:
Systems of bilinear equations, e. g.

u1v1 + 5u1v2 + 7u2v3 = −12

u3v1 − 9u2v2 + 4u3v2 = 2

can be recast as linear system of equations on a matrix that has rank 1:

uvT =

2
666664

u1v1 u1v2 u1v3 · · · u1vN

u2v1 u2v2 u2v3 · · · u2vN

u3v1 u3v2 u3v3 · · · u3vN

...
...

. . .

uKv1 uKv2 uKv3 · · · uKvN

3
777775

Compressive (low rank) recovery ⇒
“Generic” quadratic systems with cN equations and N unknowns can be
solved using nuclear norm minimization



Blind deconvolution

image deblurring multipath in wireless comm

(image courtesy of Hao, Lu, Qinzhang) (image from Wikimedia Commons)

We observe
y[`] =

∑

n

s[n]h[`− n]

and want to “untangle” s and h.



Blind deconvolution as low rank recovery

Each sample of y = s ∗ h is a bilinear combination of the unknowns,

y[`] =
∑

n

s[n]h[`− n]

and is a linear combination of shT:

y1[0]

y1[1]

y1[2]

y1[9]

2
66666666666666666666666664

s[�2]h[0] s[�2]h[1] s[�2]h[2]

s[�1]h[0] s[�1]h[1] s[�1]h[2]

s[0]h[0] s[0]h[1] s[0]h[2]

s[1]h[0] s[1]h[1] s[1]h[2]

s[2]h[0] s[2]h[1] s[2]h[2]

s[3]h[0] s[3]h[1] s[3]h[2]

s[4]h[0] s[4]h[1] s[4]h[2]

s[5]h[0] s[5]h[1] s[5]h[2]

s[6]h[0] s[6]h[1] s[6]h[2]

s[7]h[0] s[7]h[1] s[7]h[2]

s[8]h[0] s[8]h[1] s[8]h[2]

s[9]h[0] s[9]h[1] s[9]h[2]

3
77777777777777777777777775



Blind deconvolution as low rank recovery

Given y = s ∗ h, it is impossible to untangle s and h unless we make
some structural assumptions

Structure: s and h live in known subspaces of RL; we can write

s = Bu, h = Cv, B : L×K, C : L×N

where B and C are matrices whose columns form bases for these spaces

We can now write blind deconvolution as a linear inverse problem with a
rank contraint:

y = A(X0), where X0 = shT has rank=1

The action of A(·) can be broken down into three linear steps:

X0 → BX0 → BX0C
T → take skew-diagonal sums



Blind deconvolution theoretical results

We observe

y = s ∗ h, h = Bw, s = Cx

= A(wxT), w ∈ RK , x ∈ RN ,

and then solve

min
X
‖X‖∗ subject to A(X) = y.

Ahmed, Recht, R, ’12:
If B is “incoherent” in the Fourier domain, and C is randomly chosen,
then we will recover X0 = shT exactly (with high probability) when

L ≥ Const · (K +N) log3(KN)



Numerical results

white = 100% success, black = 0% success

h sparse, s sparse h sparse, s short

In the cases above, we can take

(N +K) . L/3



Numerical results

Unknown image with known support in the wavelet domain,
Unknown blurring kernel with known support in spatial domain



Numerical results
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Numerical results

Oracle recovery
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Numerical results

Adaptive recovery
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Passive imaging with multiple channels

h1(t)

h2(t)

hK(t)

s(t)

yK(t) = s(t) ⇤ hK(t)

y2(t) = s(t) ⇤ h2(t)

y1(t) = s(t) ⇤ h1(t)

...
...

2
66666666666666666666666664

s[�2]h1[0] s[�2]h1[1] s[�2]h1[2]

s[�1]h1[0] s[�1]h1[1] s[�1]h1[2]

s[0]h1[0] s[0]h1[1] s[0]h1[2]

s[1]h1[0] s[1]h1[1] s[1]h1[2]

s[2]h1[0] s[2]h1[1] s[2]h1[2]

s[3]h1[0] s[3]h1[1] s[3]h1[2]

s[4]h1[0] s[4]h1[1] s[4]h1[2]

s[5]h1[0] s[5]h1[1] s[5]h1[2]

s[6]h1[0] s[6]h1[1] s[6]h1[2]

s[7]h1[0] s[7]h1[1] s[7]h1[2]

s[8]h1[0] s[8]h1[1] s[8]h1[2]

s[9]h1[0] s[9]h1[1] s[9]h1[2]

s[�2]h2[0] s[�2]h2[1] s[�2]h2[2]

s[�1]h2[0] s[�1]h2[1] s[�1]h2[2]

s[0]h2[0] s[0]h2[1] s[0]h2[2]

s[1]h2[0] s[1]h2[1] s[1]h2[2]

s[2]h2[0] s[2]h2[1] s[2]h2[2]

s[3]h2[0] s[3]h2[1] s[3]h2[2]

s[4]h2[0] s[4]h2[1] s[4]h2[2]

s[5]h2[0] s[5]h2[1] s[5]h2[2]

s[6]h2[0] s[6]h2[1] s[6]h2[2]

s[7]h2[0] s[7]h2[1] s[7]h2[2]

s[8]h2[0] s[8]h2[1] s[8]h2[2]

s[9]h2[0] s[9]h2[1] s[9]h2[2]

s[�2]h3[0] s[�2]h3[1] s[�2]h3[2]

s[�1]h3[0] s[�1]h3[1] s[�1]h3[2]

s[0]h3[0] s[0]h3[1] s[0]h3[2]

s[1]h3[0] s[1]h3[1] s[1]h3[2]

s[2]h3[0] s[2]h3[1] s[2]h3[2]

s[3]h3[0] s[3]h3[1] s[3]h3[2]

s[4]h3[0] s[4]h3[1] s[4]h3[2]

s[5]h3[0] s[5]h3[1] s[5]h3[2]

s[6]h3[0] s[6]h3[1] s[6]h3[2]

s[7]h3[0] s[7]h3[1] s[7]h3[2]

s[8]h3[0] s[8]h3[1] s[8]h3[2]

s[9]h3[0] s[9]h3[1] s[9]h3[2]

3
77777777777777777777777775

y1[0]

y1[1]

y1[2]

y1[9]

y2[0]

y2[1]

y2[2]

y2[9]

y3[0]

y3[1]

y3[2]

y3[9]



Recovery results

Source / output length: 1000
Number of channels: 100
Channel impulse response length: 50
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Sampling correlated signals



Sensor arrays

Caltech multielectrode IBM phased array

MIT nanophotonic array UCSD phased



Sampling correlated signals

M

Goal: acquire an ensemble of M signals

Bandlimited to W/2

“Correlated” → M signals are ≈ linear combinations of R signals



Sampling correlated signals




−0.82 −1.31
1.09 0.27
1.05 1.81
−0.74 −0.31
−0.97 0.94
1.19 2.19




=

M

R

Goal: acquire an ensemble of M signals

Bandlimited to W/2

“Correlated” → M signals are ≈ linear combinations of R signals



Components

analog 
VMM

modulator
x(t) p(t)x(t)

code p

LTI filterx(t) x(t) � h(t)
h

ADC
rate ϕ

x(t) {x(tk)}k

X(t) AX(t)
A

M × N

Analog vector-matrix multiplier spreads energy across channels

Modulators spread energy across frequency

Filters spread energy in one channel across time

ADCs take samples



Sampling using the random demodulator

code d1

code d2

code dM

X …
 …
 

rateW

rateW

rateW …
 

LTI
low pass

LTI

LTI

low pass

low pass

ADC

ADC

ADC

rateΩ 

rateΩ 

rateΩ 

Instead of running each ADC at rate Ω ≥W , we can take

Ω &
R

M
W

to within logarithmic factors



Multiplexing onto one channel

We can always combine M channels into 1 by multiplexing in either
time or frequency

Frequency multiplexer:

modulator
cos(Wt)

modulator
cos(2Wt)

+ ADC
rate 3W

Replace M ADCs running at rate W with 1 ADC at rate MW



Compressive multiplexing

modulator

modulator

modulator

modulator

+

...

ADC

code p1
rate ϕ

code p2

code p3

rate ϕ

rate ϕ

rate ϕ

rate ϕ

...
code pM

y

If the signals are somewhat spread out in time, then the ADC and
modulators can run at rate

ϕ & RW

to within logarithmic factors
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