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Linear systems of equations are ubiquitous

Data
Converter
ADS5485

{J TEXAS
INSTRUMENTS

All of these can be abstracted to



What we know about solving linear systems

Observe:
y = Axg + noise

Classical: If A" A is well conditioned then we can stably estimate xg
using least-squares.

Sparse: If A keeps S-sparse signals separated then we can stably
estimate sparse xq using {1 minimization.

Low rank: If A keeps rank-R matrices separated then we can stably
estimate low-rank aq using nuclear norm minimization.

The last two can be achieved for underdetermined A as long as its rows are
global and diverse. This can be achieved by injecting randomness into A.



Optimization programs for solving linear systems

Observe:
y = Axg + noise

Classical: [least-squares:
min [y — Az3

Sparse: {1 minimization:
win [y — Az + 7z
where [|z||; = sum of magnitudes
Low rank: nuclear norm minimization:
min [jy — AX)|3+ 71X«

where || X ||« = sum of singular values



Agenda for today

@ Compressive subspace matching on the continuum
@ Blind deconvolution using convex programming

© Multichannel compressive sampling



Source localization

receivers
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We observe a narrowband source emitting from (unknown) location 7(:
y = aG(1p) + noise, y e CV

Goal: estimate 7( using only implicit knowledge of the channel G



Matched field processing
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Given observations y, estimate 7) by “matching against the field":
ly, G(@)P
© GO

We do not have direct access to G, but can calculate (y, G(7)) for all 7
using time-reversal

7 = argminmin ||y — BG(P)|? = ~ [y, G(7)?
7 peC



Coded simulations

@ Pre-compute the responses to a series of randomly and simultaneously
activated sources along the receiver array

by =G, by=GH¢,, ... by =G,

where the ¢,,, are random vectors
o Stack up the bl to form the matrix @G
@ Given the observations y, code them to form ®y, and solve

A o , Py, 2G(7)[*
fes = arg minmin | Py — BABG(7)||2 = arg max (@, —
g = Gec H y—p ( )H2 g < ||‘I’G(T)H2




Compressive ambiguity functions

ambiguity function (G'ly) compressed amb func (GH @ ®y)(7)
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M =10 (compare to 37 receivers)

@ The compressed ambiguity function is a random process whose mean
is the true ambiguity function

@ For very modest M, these two functions peak in the same place



Numerical simulation:
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Union of subspaces

Basic problem:
We have a collection of subspaces {Sy, 0 € ©}.
Given y = ®xq, we like to know which subspace is the best “fit" for x

Applications:
@ source localization
@ direction of arrival estimation in array processing

@ pulse detection / time-of-arrival estimation from compressed samples
(“smashed filtering")



Union of subspaces

Basic problem:
We have a collection of subspaces {Sy, 6 € O} in RV,
Given y = ®x(, we like to know which subspace is the best “fit" for x

Two questions:

© When can we distinguish @1 € Sp, and 2 € Sy, when viewed
through ®7 Stable embedding:

(1= 0)llzr — @23 < (|21 — @@} < (1+6)]r — 23

@ When can we find subspace most closely aligned with &y when viewed
through ®7?



Embedding subsets of RY

Let Q ¢ RY. For ® random, when do we have
(1=0)|z1 — z23 < [ @1 — Paa3 < (1+0)||lwy — a2,

for all 1, x> € Q with appropriately high probability?

e Q is a finite set of size |Q| = Q. Then

5 < 2logQ.
~ M
So we can take
M Z 2logQ

This is known as the Johnson-Lindenstrauss Lemma (1984).



Embedding subsets of RY

Let Q@ ¢ RY. For ® random, when do we have
(1= 0)|ler — @2l < ||z — Rxall5 < (14 6)[lws — @2l3,

for all &1, x5 € Q with appropriately high probability?

@ O is a subspace of dimension K. Then ¢ is directly related to the
singular values of ®, and

so we can take

This is a “classical” result by Marchenko, Pastur (1960s), and later
Szarek (1990s).



Embedding subsets of RY

Let @ ¢ RY. For ® random, when do we have
(1 =8|y — 23 < [Py — Baxall; < (1+06)[@) — w23,

for all 1, x> € Q with appropriately high probability?

e Qs a finite collection of subspaces of dimension K, {Sy, 6 € ©.

Then
5 < [2K + 2log |©|
~ M

Example: sparse recovery for compressive sensing,
6] = () ~ ef18(N/K) "and so we can take

M z 2Klog(N/K)

(Candes, Tao; Rudleson, Vershynin; Davenport et al., mid-2000s)



Embedding subsets of RY

Let Q@ ¢ RY. For ® random, when do we have
(1= 0)|ler — m2ll5 < [|Pz1 — Rxall5 < (14 6)[lws — @2l3,

for all x1, o € Q with appropriately high probability?

@ Q is a smooth manifold of dimension K. Then

5 < \/2K‘f(curvature, volume,etc.)

M
(Wakin et al, Woodruff, Yap et al, ..., recent)



Embedding subsets of RY

Let Q ¢ RY. For ® random, when do we have
(1=0)[er — a3 < [|[®x1 — xall; < (14 06)[@1 — w23,

for all &1, x5 € Q with appropriately high probability?

e Qs a infinite collection of subspaces of dimension K, {Sy: § € O}.

We can take
5 < 2K A
~ M

where A is a measure of geometrical complexity of ©.

In typical cases of interest, A ~ log (max (K, “effective dimension™)).

(Mantzel and R. '13)



Geometrical complexity
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We have T = {8,9}9, d(8017892) = HP91 — P92H

Then A depends on how fast the cover grows as € — 0,
characterized by Ny, d such that

1 d
N(T7d56) < No ()
€



Example: Shiftable subspaces

Smooth window, modulated by K different cosines (LOT).
Width of functions = o

Shift over interval of length T

In this case, we have

A ~log(K) + log(T/o)



Compressive subspace matching

Collection of subspaces {Sy, 0 € O}
Observe y = ®x, where x € Sy,

Full observation: Solve

6 = argmin ||z — Py
where Py = V9V9T is the projector onto Sy.
Compressed observation: Solve

0 =argmin |y — Poyl3

where Py = ®V(Vi®TeVvy) 'vieT



Compressive subspace matching

Pgw 159'1)3:
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f = arg maxg || Py |2 0 = argmaxy || Poy||3

Performance gap: B
E~E = ||Psz|3 — | Pyl



Compressive subspace matching

Pyx

5200 5 00 5800

5400 5600

Performance gap (for ||z|2 = 1):

PO KA
E—FE<4/—
-V M

where A is the same geometric constant as before.

Compressive subspace matching is effective for

M 2z K log (max (K, "fill factor”))




Underwater acoustics: multiple sources
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Frequency estimation on actual hardware
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Pulse detection and segmentation
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Blind deconvolution using convex programming



Bilinear equations

Bilinear equations contain unknown terms multiplied by one another
uv1 + duyvg + Tugvgy = —12
uzv1 — Quaovg + 4dusvg = 2

ULV — 6u1v3 — uzvz = 7

Their nonlinearity makes them trickier to solve, and the computational
framework is nowhere nearly as strong as for linear equations



Bilinear equations

Simple (but only recently appreciated) observation:
Systems of bilinear equations, e. g.

U1V + duve + Tugvy = —12

u3v1 — Quaovg + 4dusvy = 2

can be recast as linear system of equations on a matrix that has rank 1.

UKVl UKV2 UKV3 -+ UKUN



Bilinear equations

Simple (but only recently appreciated) observation:
Systems of bilinear equations, e. g.

u1v1 + durve + Tugvz = —12

can be recast as linear system of equations on a matrix that has rank 1:

(wvD) @y wivs o woy |
ugv1  (Ugz) (U2U3) v UUN

wl = |(U3v1) (u3v2) u3zv3 - UUN

UKV UKV UgV3 --- UKUN

Compressive (low rank) recovery =
“Generic” quadratic systems with ¢N equations and N unknowns can be
solved using nuclear norm minimization



Blind deconvolution

image deblurring
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multipath in wireless comm

(image courtesy of Hao, Lu, Qinzhang) (image from Wikimedia Commons)

We observe

yll] = sl hlt —n]

and want to “untangle” s and h.



Blind deconvolution as low rank recovery

Each sample of y = s x h is a bilinear combination of the unknowns,

and is a linear combinati

yll = sin]hlt —n]
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Blind deconvolution as low rank recovery

Given y = s x h, it is impossible to untangle s and h unless we make
some structural assumptions

Structure: s and h live in known subspaces of RY; we can write
s = Bu, h=Cv, B:LxK, C:LxN

where B and C are matrices whose columns form bases for these spaces

We can now write blind deconvolution as a linear inverse problem with a
rank contraint:

y = A(Xy), where Xg=sh' hasrank=1

The action of A(-) can be broken down into three linear steps:

Xo > BXy — BXOCT — take skew-diagonal sums



Blind deconvolution theoretical results

We observe

y=sxh, h=Bw, s=Cx
= A(wz"), weRE, zeRY,

and then solve
n}}n | X ||« subjectto A(X)=uy.

Ahmed, Recht, R, '12:
If B is “incoherent” in the Fourier domain, and C' is randomly chosen,
then we will recover X = sh™ exactly (with high probability) when

L > Const - (K + N)log®(KN)



Numerical results

white = 100% success, black = 0% success
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Numerical results

Unknown image with known support in the wavelet domain,
Unknown blurring kernel with known support in spatial domain
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Numerical results

o >

image blurring kernel blurred image



Numerical results

Oracle recovery

recovered image recovered kernel



Numerical results

Adaptive recovery

recovered image recovered kernel



Passive imaging with multiple channels

1y2<t ) = s(t) * ha(t)

*hl()

s[=1]h2[0] 2[1 2[2

Al0] 2[0] 2 (1] i 2]

“] B [1] 9[llhz[Zl

2

s[7]h2[0 5[71112[1] 9]
s]h,[o 1] s[8]ha2]

M0 solneft]  slolhel2]

IS

91k, (0] s]— ;
s[=1]ha[0] (1] _s|=HT:
s sl s[l]h1[2 v

9]«

) * hi(t)

S[=2hal0] s[-2lha(l] _sl—2[2] ]

s[—1]hal0] sl 3(2]
310] Al 3[2)
73[0] sHifs[1]  s[1]hs[2

]

G0 slmlt] s2hal2]
siglalo)  s(alhsl)  s(3lhl2
silhal0]  sllalll  sl4Thsl2
slhalo]  slolhalll  sl5lhal2
sl sttt ol
s{Thalo]  s[7lhall] ]
5l0] ]

] |

sl sl8)hsf2
s[Olhs[1]  s[9lhs[2




y results
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Sampling correlated signals



Sensor arrays
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Sampling correlated signals

@ Goal: acquire an ensemble of M signals
e Bandlimited to /2

o “Correlated” — M signals are ~ linear combinations of R signals



Sampling correlated signals
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@ Goal: acquire an ensemble of M signals

e Bandlimited to /2
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o “Correlated” — M signals are ~ linear combinations of R signals



Components

modulator a(t
(0 POyt

(1) m (1) % h(t)
X (1) I
z(t) {z(te)

Analog vector-matrix multiplier spreads energy across channels
Modulators spread energy across frequency

Filters spread energy in one channel across time

ADCs take samples



Sampling using the random demodulator

code d;
te W
rate rate .Q
"‘ lova’Igass
LTI
.“ low pass
code do
X rate W % rate ‘Q‘
: ° rate .Q
fwwwm\w —» )
code dps
rate W

@ Instead of running each ADC at rate {2 > W, we can take

R
Q> v
NMW

to within logarithmic factors



Multiplexing onto one channel

@ We can always combine M channels into 1 by multiplexing in either
time or frequency

Frequency multiplexer:

modulator e ADC
cos(Wt) rate 3W
modulator
cos(2Wt

@ Replace M ADCs running at rate W with 1 ADC at rate MW




Compressive multiplexing

modulator
code py
rate

modulator
code po
rate

modulator

code p3
rate

modulator
code pr
rate

o If the signals are somewhat spread out in time, then the ADC and
modulators can run at rate

¢ 2 RW

to within logarithmic factors
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