Blind Deconvolution and Compressed Sensing

Dominik Stöger

Technische Universität München, Department of Mathematics, Applied Numerical Analysis
dominik.stoeger@ma.tum.de

Joint work with Peter Jung (TU Berlin), Felix Krahmer (TU München)
supported by DFG priority program "Compressed Sensing in Information Processing" (CoSIP)

Overview

Introduction and Problem Formulation

Recovery guarantees

Proof sketch

Discussion

Overview

Introduction and Problem Formulation

Recovery guarantees

Proof sketch

Discussion

Blind Deconvolution

- bilinear inverse problem: $z=B(x, y)$
- ambiguities, constraining x and/or y

Many applications:

- imaging (blind deblurring)
- radar, e.g., ground penetrating radar (GPR), radar imaging
- speech recognition
- wireless communication

Blind Deconvolution and Demixing

A problem in Wireless Communication:

- r different devices
- device i delivers message m_{i}
- Linear encoding: $x_{i}=C_{i} m_{i}$ with $C_{i} \in \mathbb{R}^{L \times N}$
- Channel model:
$w_{i}=B_{i} h_{i}$, where $B_{i} \in \mathbb{R}^{L \times K}$

- Received signal:

$$
y=\sum_{i=1}^{r} w_{i} * x_{i} \in \mathbb{R}^{L}
$$

Goal: recover all m_{i} from y

Assumptions on B_{i} and C_{i}

$$
y=\sum_{i=1}^{r} w_{i} * x_{i}=\sum_{i=1}^{r} B_{i} h_{i} * C_{i} m_{i}
$$

- Assume w_{i} is concentrated on the first few entries, i.e., B_{i} extends h_{i} by zeros
- (Our analysis will include more general B_{i})
- Choice of C_{i} is arbitrary \Rightarrow randomize
- Choose C_{i} to have i.i.d. standard normal entries

Lifting

- There are unique linear maps $\mathcal{A}_{i}: \mathbb{R}^{K \times N} \rightarrow \mathbb{R}^{L}$ such that for arbitrary h_{i} and m_{i}

$$
\begin{gathered}
w_{i} * x_{i}=B_{i} h_{i} * C_{i} m_{i}=\mathcal{A}_{i}\left(h_{i} m_{i}^{*}\right)=\mathcal{A}_{i}\left(Y_{i}\right) \\
y=\sum_{i=1}^{r} \mathcal{A}_{i}\left(h_{i} m_{i}^{*}\right)=\mathcal{A}\left(X_{0}\right)
\end{gathered}
$$

where

$$
X_{0}=\left(h_{1} m_{1}^{*}, \cdots, h_{r} m_{r}^{*}\right)
$$

- Low rank matrix recovery problem

Overview

Introduction and Problem Formulation

Recovery guarantees

Proof sketch

Discussion

A convex approach for recovery

- $r=1$ investigated in [Ahmed, Recht, Romberg, 2012]

■ $r \geq 1$ semidefinite program (SDP) [Ling, Strohmer, 2015]

$$
\begin{equation*}
\operatorname{minimize} \sum_{i=1}^{r}\left\|Y_{i}\right\|_{*} \quad \text { subject to } \sum_{i=1}^{r} \mathcal{A}_{i}\left(Y_{i}\right)=y \tag{SDP}
\end{equation*}
$$

- $\|\cdot\|_{*}$: nuclear norm, i.e., the sum of the singular values
- Recovery is guaranteed with high probability, if

$$
L \geq C r^{2}\left(K+\mu_{h}^{2} N\right) \log ^{3} L \log r
$$

- coherence parameter: $1 \leq \mu_{h}=\max _{i} \frac{\left\|\hat{h}_{i}\right\|_{\infty}}{\left\|h_{i}\right\|_{2}} \leq \sqrt{K}$

Linear scaling in r

- Number of degrees of freedom: $r(K+N)$
- Recovery guarantee of Ling and Strohmer (up to log-factors)

$$
L \geq C r^{2}\left(K+\mu_{h}^{2} N\right) \log \cdots
$$

- Optimal in K and R, suboptimal in r
- Conjecture by Strohmer: Number of required measurements scales linear in r
- This is supported by numerical experiments

Main result

Theorem (Jung, Krahmer, S., 2016) Let $\alpha \geq 1$. Assume that

$$
\begin{equation*}
L \geq C_{\alpha} r\left(K \log ^{2} K+N \mu_{h}^{2}\right) \log ^{2} L \log \left(\gamma_{0} r\right) \tag{1}
\end{equation*}
$$

where

$$
\gamma_{0}=\sqrt{N\left(\log \left(\frac{N L}{2}\right)\right)+\alpha \log L}
$$

and C_{α} is a universal constant only depending on α. Then with probability $1-\mathcal{O}\left(L^{-\alpha}\right)$ the recovery program is successful, i.e. there exists X_{0} is the unique minimizer of (SDP).

- (Near) optimal dependence on K, N, and r

Overview

Introduction and Problem Formulation

Recovery guarantees

Proof sketch

Discussion

Proof overview

Two main steps in the proof:

- Establishing sufficient conditions for recovery
\Rightarrow approximate dual certificate
- Constructing the dual certificate via Golfing Scheme

Proof overview

Two main steps in the proof:

- Establishing sufficient conditions for recovery
\Rightarrow approximate dual certificate
- Constructing the dual certificate via Golfing Scheme
- Crucial new ingredient for both steps:

Restricted isometry property on $2 r$-dimensional space

$$
\begin{aligned}
T=\{ & \left(u_{1} m_{1}^{*}+h_{1} v_{1}^{*}, \cdots, u_{r} m_{r}^{*}+h_{r} v_{r}^{*}\right): \\
& \left.u_{1}, \cdots, u_{r} \in \mathbb{R}^{K}, v_{1}, \cdots, v_{r} \in \mathbb{R}^{N}\right\}
\end{aligned}
$$

Intuition for T :
Directions of change when slightly varying the m_{i} 's and h_{i} 's

Restricted isometry property 1

Definition

We say that \mathcal{A} fulfills the restricted isometry property on T for some $\delta>0$, if for all $X=\left(X_{1}, \cdots, X_{r}\right) \in T$

$$
(1-\delta) \sum_{i=1}^{r}\left\|X_{i}\right\|_{F}^{2} \leq\left\|\sum_{i=1}^{r} \mathcal{A}_{i}\left(X_{i}\right)\right\|_{\ell_{2}}^{2} \leq(1+\delta) \sum_{i=1}^{r}\left\|X_{i}\right\|_{F}^{2}
$$

[Ling, Strohmer, 2015]: Each operator \mathcal{A}_{i} acts almost isometrically on

$$
T_{i}=\left\{u m_{i}^{*}+h_{i} v^{*}: u \in \mathbb{R}^{K}, v \in \mathbb{R}^{N}\right\}
$$

and $\mathcal{A}_{i}, \mathcal{A}_{j}$ are incoherent
$\Rightarrow r^{2}$-bottleneck

Restricted isometry property 2

- Observe:

Restricted isometry property for some $\delta>0$ is equivalent to

$$
\begin{aligned}
\delta & \geq \sup _{X \in T}\left|\left\|\sum_{i=1}^{r} \mathcal{A}_{i}\left(X_{i}\right)\right\|_{\ell_{2}}^{2}-\sum_{i=1}^{r}\left\|X_{i}\right\|_{F}^{2}\right| \\
& =\sup _{X \in T}\left|\left\|\sum_{i=1}^{r} \mathcal{A}_{i}\left(X_{i}\right)\right\|_{\ell_{2}}^{2}-\mathbb{E}\left[\left\|\sum_{i=1}^{r} \mathcal{A}_{i}\left(X_{i}\right)\right\|_{\ell_{2}}^{2}\right]\right|
\end{aligned}
$$

- Suprema of chaos processes: The last term can be bounded using results from [Krahmer, Mendelson, Rauhut, 2014].

Overview

Introduction and Problem Formulation

Recovery guarantees

Proof sketch

Discussion

Open questions

- Generalization to more general random matrices
- Faster algorithms
- What if only a few number of devices are active? Does one obtain better recovery guarantees?
- Generalization to sparsity assumption on h (instead of a subspace assumption)

