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Introduction and Problem Formulation

Blind Deconvolution

= *
z (y,x)

� bilinear inverse problem: z = B(x , y)

� ambiguities, constraining x and/or y

Many applications:

� imaging (blind deblurring)

� radar, e.g., ground penetrating radar (GPR), radar imaging

� speech recognition

� wireless communication
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Introduction and Problem Formulation

Blind Deconvolution and Demixing
A problem in Wireless Communication:

� r different devices

� device i delivers message mi

� Linear encoding:
xi = Cimi with Ci ∈ RL×N

� Channel model:
wi = Bihi , where Bi ∈ RL×K

� Received signal:

y =
r∑

i=1

wi ∗ xi ∈ RL

Goal: recover all mi from y
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Introduction and Problem Formulation

Assumptions on Bi and Ci

y =
r∑

i=1

wi ∗ xi =
r∑

i=1

Bihi ∗ Cimi

� Assume wi is concentrated on the first few entries, i.e., Bi extends
hi by zeros

� (Our analysis will include more general Bi )

� Choice of Ci is arbitrary ⇒ randomize

� Choose Ci to have i.i.d. standard normal entries
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Introduction and Problem Formulation

Lifting

� There are unique linear maps Ai : RK×N → RL such that for
arbitrary hi and mi

wi ∗ xi = Bihi ∗ Cimi = Ai (him
∗
i ) = Ai (Yi )

�

y =
r∑

i=1

Ai (him
∗
i ) = A (X0) ,

where
X0 = (h1m

∗
1, · · · , hrm∗r )

� Low rank matrix recovery problem
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Recovery guarantees

A convex approach for recovery

� r = 1 investigated in [Ahmed, Recht, Romberg, 2012]

� r ≥ 1 semidefinite program (SDP) [Ling, Strohmer, 2015]

minimize
r∑

i=1

‖Yi‖∗ subject to
r∑

i=1

Ai (Yi ) = y . (SDP)

� ‖ · ‖∗: nuclear norm, i.e., the sum of the singular values

� Recovery is guaranteed with high probability, if

L ≥ Cr2
(
K + µ2hN

)
log3 L log r

� coherence parameter: 1 ≤ µh = maxi
‖ĥi‖∞
‖hi‖2 ≤

√
K
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Recovery guarantees

Linear scaling in r

� Number of degrees of freedom: r (K + N)

� Recovery guarantee of Ling and Strohmer (up to log-factors)

L ≥ Cr2
(
K + µ2hN

)
log · · ·

� Optimal in K and R, suboptimal in r

� Conjecture by Strohmer: Number of required measurements scales
linear in r

� This is supported by numerical experiments
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Recovery guarantees

Main result

Theorem (Jung, Krahmer, S., 2016)

Let α ≥ 1. Assume that

L ≥ Cαr
(
K log2 K + Nµ2h

)
log2 L log (γ0r) , (1)

where

γ0 =

√
N

(
log

(
NL

2

))
+ α log L

and Cα is a universal constant only depending on α. Then with
probability 1−O (L−α) the recovery program is successful, i.e. there
exists X0 is the unique minimizer of (SDP).

� (Near) optimal dependence on K , N , and r
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Proof sketch

Proof overview

Two main steps in the proof:

� Establishing sufficient conditions for recovery
⇒ approximate dual certificate

� Constructing the dual certificate via Golfing Scheme

� Crucial new ingredient for both steps:
Restricted isometry property on 2r-dimensional space

T =
{

(u1m
∗
1 + h1v

∗
1 , · · · , urm∗r + hrv

∗
r ) :

u1, · · · , ur ∈ RK , v1, · · · , vr ∈ RN
}

Intuition for T :
Directions of change when slightly varying the mi ’s and hi ’s
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Proof sketch

Restricted isometry property 1

Definition
We say that A fulfills the restricted isometry property on T for some
δ > 0, if for all X = (X1, · · · ,Xr ) ∈ T

(1− δ)
r∑

i=1

∥∥∥Xi

∥∥∥2
F
≤
∥∥∥ r∑

i=1

Ai (Xi )
∥∥∥2
`2
≤ (1 + δ)

r∑
i=1

∥∥∥Xi

∥∥∥2
F
.

[Ling, Strohmer, 2015]: Each operator Ai acts almost isometrically on

Ti =
{
um∗i + hiv

∗ : u ∈ RK , v ∈ RN
}
.

and Ai ,Aj are incoherent
⇒ r2-bottleneck
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Proof sketch

Restricted isometry property 2

� Observe:
Restricted isometry property for some δ > 0 is equivalent to

δ ≥ sup
X∈T

∣∣∣‖ r∑
i=1

Ai (Xi ) ‖2`2 −
r∑

i=1

‖Xi‖2F
∣∣∣

= sup
X∈T

∣∣∣‖ r∑
i=1

Ai (Xi ) ‖2`2 − E
[
‖

r∑
i=1

Ai (Xi ) ‖2`2
]∣∣∣.

� Suprema of chaos processes: The last term can be bounded
using results from [Krahmer, Mendelson, Rauhut, 2014].
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Discussion

Open questions

� Generalization to more general random matrices

� Faster algorithms

� What if only a few number of devices are active? Does one obtain
better recovery guarantees?

� Generalization to sparsity assumption on h
(instead of a subspace assumption)
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