Blind Deconvolution and Compressed Sensing

Dominik Stöger

Technische Universität München, Department of Mathematics, Applied Numerical Analysis

dominik.stoeger@ma.tum.de

Joint work with Peter Jung (TU Berlin), Felix Krahmer (TU München)

supported by DFG priority program "Compressed Sensing in Information Processing" (CoSIP)

Overview

Introduction and Problem Formulation

Recovery guarantees

Proof sketch

Discussion

▲□▶▲圖▶▲필▶▲필▶ 厘 少へ⊙

Dominik Stöger

Recovery guarantees

Proof sketch

Discussion

▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

Dominik Stöger

Blind Deconvolution

- bilinear inverse problem: z = B(x, y)
- ambiguities, constraining x and/or y

Many applications:

- imaging (blind deblurring)
- radar, e.g., ground penetrating radar (GPR), radar imaging
- speech recognition
- wireless communication

Blind Deconvolution and Demixing

A problem in Wireless Communication:

- r different devices
- device i delivers message m_i
- Linear encoding:

 $x_i = C_i m_i$ with $C_i \in \mathbb{R}^{L \times N}$

Channel model:

$$w_i = B_i h_i$$
, where $B_i \in \mathbb{R}^{L \times K}$

Received signal:

$$y = \sum_{i=1}^r w_i * x_i \in \mathbb{R}^L$$

Goal: recover **all** m_i from y

Assumptions on B_i and C_i

$$y = \sum_{i=1}^{r} w_i * x_i = \sum_{i=1}^{r} B_i h_i * C_i m_i$$

- Assume w_i is concentrated on the first few entries, i.e., B_i extends h_i by zeros
- (Our analysis will include more general B_i)
- Choice of C_i is arbitrary \Rightarrow randomize
- Choose C_i to have i.i.d. standard normal entries

There are unique linear maps A_i : ℝ^{K×N} → ℝ^L such that for arbitrary h_i and m_i

$$w_i * x_i = B_i h_i * C_i m_i = \mathcal{A}_i (h_i m_i^*) = \mathcal{A}_i (Y_i)$$

$$y = \sum_{i=1}^{r} \mathcal{A}_{i} \left(h_{i} m_{i}^{*} \right) = \mathcal{A} \left(X_{0} \right),$$

where

$$X_0 = (h_1 m_1^*, \cdots, h_r m_r^*)$$

Low rank matrix recovery problem

Recovery guarantees

Proof sketch

Discussion

▲ロト 4 回 ト 4 三 ト 4 三 ト 9 4 (*)

A convex approach for recovery

- r = 1 investigated in [Ahmed, Recht, Romberg, 2012]
- $r \ge 1$ semidefinite program (SDP) [Ling, Strohmer, 2015]

minimize
$$\sum_{i=1}^{r} \|Y_i\|_*$$
 subject to $\sum_{i=1}^{r} \mathcal{A}_i(Y_i) = y.$ (SDP)

|| · ||_{*}: nuclear norm, i.e., the sum of the singular values
Recovery is guaranteed with high probability, if

$$L \geq Cr^2 \left(\textit{K} + \mu_h^2\textit{N} \right) \log^3 L \log r$$

• coherence parameter:
$$1 \leq \mu_h = \max_i rac{\|\hat{h}_i\|_\infty}{\|h_i\|_2} \leq \sqrt{\mathcal{K}}$$

Linear scaling in r

- Number of degrees of freedom: r(K + N)
- Recovery guarantee of Ling and Strohmer (up to log-factors)

$$L \geq Cr^2 \left(\mathbf{K} + \mu_h^2 \mathbf{N} \right) \log \cdots$$

- Optimal in *K* and *R*, suboptimal in *r*
- Conjecture by Strohmer: Number of required measurements scales linear in r
- This is supported by numerical experiments

Main result

Theorem (Jung, Krahmer, S., 2016) Let $\alpha \ge 1$. Assume that

$$L \ge C_{\alpha} r \left(K \log^2 K + N \mu_h^2 \right) \log^2 L \log \left(\gamma_0 r \right), \tag{1}$$

where

$$\gamma_0 = \sqrt{N\left(\log\left(\frac{NL}{2}\right)\right) + \alpha\log L}$$

and C_{α} is a universal constant only depending on α . Then with probability $1 - O(L^{-\alpha})$ the recovery program is successful, i.e. there exists X_0 is the unique minimizer of (SDP).

Recovery guarantees

Proof sketch

Discussion

・ロト・4回ト・4 三ト・4 三ト 三 つへで

Dominik Stöger

Proof overview

Two main steps in the proof:

- Establishing sufficient conditions for recovery
 - \Rightarrow approximate dual certificate
- Constructing the dual certificate via Golfing Scheme

Proof overview

Two main steps in the proof:

- Establishing sufficient conditions for recovery ⇒ approximate dual certificate
- Constructing the dual certificate via Golfing Scheme
- Crucial new ingredient for both steps:
 Restricted isometry property on 2r-dimensional space

$$T = \left\{ \left(u_1 m_1^* + h_1 v_1^*, \cdots, u_r m_r^* + h_r v_r^* \right) : \\ u_1, \cdots, u_r \in \mathbb{R}^K, v_1, \cdots, v_r \in \mathbb{R}^N \right\}$$

Intuition for T: Directions of change when slightly varying the m_i 's and h_i 's

Restricted isometry property 1

Definition

We say that A fulfills the restricted isometry property on T for some $\delta > 0$, if for all $X = (X_1, \dots, X_r) \in T$

$$(1-\delta)\sum_{i=1}^{r}\left\|X_{i}\right\|_{F}^{2}\leq\left\|\sum_{i=1}^{r}\mathcal{A}_{i}\left(X_{i}
ight)
ight\|_{\ell_{2}}^{2}\leq\left(1+\delta
ight)\sum_{i=1}^{r}\left\|X_{i}
ight\|_{F}^{2}$$

[Ling, Strohmer, 2015]: Each operator A_i acts almost isometrically on

$$T_i = \left\{ um_i^* + h_i v^* : u \in \mathbb{R}^K, v \in \mathbb{R}^N \right\}.$$

and $\mathcal{A}_i, \mathcal{A}_j$ are incoherent $\Rightarrow r^2$ -bottleneck

Restricted isometry property 2

• Observe:

Restricted isometry property for some $\delta > 0$ is equivalent to

$$\delta \geq \sup_{X \in \mathcal{T}} \left\| \sum_{i=1}^{r} \mathcal{A}_{i} \left(X_{i} \right) \|_{\ell_{2}}^{2} - \sum_{i=1}^{r} \| X_{i} \|_{F}^{2} \right\|$$
$$= \sup_{X \in \mathcal{T}} \left\| \sum_{i=1}^{r} \mathcal{A}_{i} \left(X_{i} \right) \|_{\ell_{2}}^{2} - \mathbb{E} \left[\left\| \sum_{i=1}^{r} \mathcal{A}_{i} \left(X_{i} \right) \|_{\ell_{2}}^{2} \right] \right].$$

• Suprema of chaos processes: The last term can be bounded using results from [Krahmer, Mendelson, Rauhut, 2014].

Recovery guarantees

Proof sketch

Discussion

・ロト・4回ト・4 三ト・4 三ト 三 つへで

Dominik Stöger

Open questions

- Generalization to more general random matrices
- Faster algorithms
- What if only a few number of devices are active? Does one obtain better recovery guarantees?
- Generalization to sparsity assumption on h (instead of a subspace assumption)