

Aachen, 20 September, 2016: CoSeRa Session A.4 Hardware + Tracking

CoSeRa 2016

False Alarms in Radar Detection within Sparse-signal Processing

Radmila Pribić

Sensors Advanced Developments Thales Nederland Delft, The Netherlands

Han Lun YAP

Sensors Division DSO National Laboratories Singapore

THALES NEDERLAND B.V. Sensors Advanced Developments Delft (Radmila Pribić)

2

- Introduction
- Background (Radar) Detection within SSP
- Proposed Analysis
- Numerical Results
- Conclusions

False Alarms in Radar Detection within SSP : Introduction

「CS-radar receiver

measurements y = sensing-model A profile x + receiver-noise z, $z \sim CN(0, \gamma I_{M})$

 $x_{\text{SSP}} = \arg\min_{x} ||y - Ax||^2 + h||x||_1$

Promising applications: high resolution, multi-target detection, ... Performance of x_{SSP} in radar in **detection** and **resolution**?

CoSeRa 2016 False Alarms in Radar Detection within SSP : Introduction (2) measurements y = sensing-model A profile x + receiver-noise Z, $z \sim CN(0, \gamma I_{M})$ threshold $x_{\text{SSP}} = \arg\min_{x} \|y - Ax\|^2 + h\|x\|_1$ © THALES NEDERLAND B.V. AND/OR ITS ✓ sensing coherence $\mu(A) = \max_{i \ i \ i \neq i} |a_i^H a_j|, ||a_n|| = 1$ ✓ sparsity of x, $K = \dim(T)$, $K < M \le N$, T ... true support set Aachen, 20 September, 2016: CoSeRa A.4 Hardware+Tracking detection metrics: $P_{fa,SSP}$ and $P_{d,SSP}$ at h? $P_{\text{fa,SSP}} = \mathsf{P}\{|\boldsymbol{x}_{\text{SSP},l}| \neq 0\}, \ l \notin \boldsymbol{T}$ $P_{d,SSP} = \mathsf{P}\{|x_{SSP,k}| \neq 0\}, k \in T$

• Existing detection : a single target at position k in y = Ax + z

$$H_1: \quad \begin{array}{l} \boldsymbol{a}_k x_k \neq 0 \\ \boldsymbol{a}_l x_l = 0 \text{ for } \forall l: l \neq k \end{array} \qquad H_0: \quad \boldsymbol{a}_n x_n = 0 \text{ for } \forall n \end{cases}$$

fixed
$$P_{\text{fa}} = \mathsf{P}\{|x_{\text{MF},n}| > \eta|H_0\}$$
 $\eta = \sqrt{-\gamma \ln P_{\text{fa}}}$
optimal $P_{\text{d}} = \mathsf{P}\{|x_{\text{MF},k}| > \eta|H_1\}$ $x_{\text{MF},n} = a_n^{\text{H}} y = a_n^{\text{H}} a_k x_k + a_n^{\text{H}} z$

 $P_{\text{fa,MF}} = \mathsf{P}\{|x_{\text{MF},l}| > \eta|H_1\} \ge P_{\text{fa}}$ due to $\mu(A)$, i.e. realistic PSF

Detection of multiple targets at positions k from T, dim(T) = K

$$H_1: \begin{array}{ll} \boldsymbol{a}_k x_k \neq 0, k \in \boldsymbol{T} \\ \boldsymbol{a}_l x_l = 0, l \notin \boldsymbol{T} \end{array} \qquad H_0: \begin{array}{ll} \boldsymbol{a}_n x_n = 0 \text{ for } \forall n \end{array}$$

$$x_{\mathrm{MF},n} = \boldsymbol{a}_n^{\mathrm{H}} \boldsymbol{y} = \boldsymbol{a}_n^{\mathrm{H}} \boldsymbol{A}_T \boldsymbol{x}_T + \boldsymbol{a}_n^{\mathrm{H}} \boldsymbol{z}_T$$

THALES NEDERLAND B.V. Sensors Advanced Developments Delft (Radmila Pribić)

© THALES NEDERLAND

COSERa 2016

$$y = Ax + z$$

$$x_{SSP} = \arg \min_{x} ||y - Ax||^{2} + h||x||_{1}$$
• Detection within SSP at positions k from T,dim(T) = K
H_1: $a_k x_k \neq 0, k \in T$ and H_0 : $a_n x_n = 0$ for $\forall n$
 $P_{fa,SSP} = P\{|x_{SSP,l}| \neq 0|H_1\} = ?$
 $P_{d,SSP} = P\{|x_{SSP,k}| \neq 0|H_1\} = ?$
SSP facilitates:
- control parameter h
- sensing coherence $\mu(A) > 0$
- multiple nonzeros, dim(T) = K
 $P_{fa,SSP} = P\{|x_{SSP,k}| \neq 0|H_1\} = ?$

- multiple nonzeros, $\dim(\mathbf{T}) = K$

detection interpretation

SSP feasibility condition for $x_{_{
m SSP}}$ in an estimated support set S

subgradient $u_{\text{SSP},n}$ identifies nonzeros: $|u_{\text{SSP},i}| = 1, i \in S$, i.e. $|x_{\text{SSP},i}| \neq 0$

$$\boldsymbol{u}_{\text{SSP}} = \boldsymbol{A}^{\text{H}}(\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}_{\text{SSP}})/h, \qquad \|\boldsymbol{u}_{\text{SSP}}\|_{\infty} \leq 1$$
$$\boldsymbol{u}_{\text{SSP},n} = \boldsymbol{a}_{n}^{\text{H}} \left[\boldsymbol{A}_{S} \left(\boldsymbol{A}_{S}^{\text{H}} \boldsymbol{A}_{S} \right)^{-1} \boldsymbol{u}_{\text{SSP},S} + \left(\boldsymbol{I}_{\text{M}} - \boldsymbol{A}_{S} \left(\boldsymbol{A}_{S}^{\text{H}} \boldsymbol{A}_{S} \right)^{-1} \boldsymbol{A}_{S}^{\text{H}} \right) \boldsymbol{z}/h \right]$$

no separation of FAs from targets

 \succ proposed test statistic $v_{\mathrm{SSP},n}$ based on $u_{\mathrm{SSP},n}$ with reference to T

$$v_{\text{SSP},n} = \boldsymbol{a}_{n}^{\text{H}} \left[\boldsymbol{A}_{T} (\boldsymbol{A}_{T}^{\text{H}} \boldsymbol{A}_{T})^{-1} \boldsymbol{u}_{\text{SSP},T} + \left(\boldsymbol{I}_{\text{M}} - \boldsymbol{A}_{T} (\boldsymbol{A}_{T}^{\text{H}} \boldsymbol{A}_{T})^{-1} \boldsymbol{A}_{T}^{\text{H}} \right) \boldsymbol{z} / \boldsymbol{h} \right]$$
$$|\boldsymbol{v}_{\text{SSP},l}| > |\boldsymbol{u}_{\text{SSP},l}| = 1, \text{ if } |\boldsymbol{x}_{\text{SSP},l}| \neq 0, \ l \notin T$$
$$|\boldsymbol{v}_{\text{SSP},k}| = |\boldsymbol{u}_{\text{SSP},k}| \leq 1, \ k \in T$$

-ES

✓ proposed test statistic $v_{\text{SSP},n}$ separates FAs from targets

$$P_{\text{fa,SSP}} = \mathsf{P}\{|x_{\text{SSP},l}| \neq 0 | H_1\} \equiv \mathsf{P}\{|v_{\text{SSP},l}| > 1 | H_1\}, l \notin T$$

$$P_{d,SSP} = \mathsf{P}\{|x_{SSP,k}| \neq 0 | H_1\} \equiv \mathsf{P}\{|v_{SSP,k}| = 1 | H_1\}, k \in T$$
$$P_{\bar{d},SSP} = \mathsf{P}\{|x_{SSP,k}| = 0 | H_1\} \equiv \mathsf{P}\{|v_{SSP,k}| < 1 | H_1\}, k \in T$$

noise only, i.e. under
$$H_0$$
 as $\mathbf{T} = \emptyset$, or under H_1 with $\mu(\mathbf{A}) = 0$:

$$v_{\text{SSP},l} = \boldsymbol{a}_l^{\text{H}} \boldsymbol{z}/h \equiv \boldsymbol{a}_l^{\text{H}} \boldsymbol{y}/h \equiv x_{\text{MF},l}/h$$

otherwise, i.e. under H_1 with $\mu(A) > 0$ and $\dim(T) > 0$

$$v_{\text{SSP},l} = \boldsymbol{a}_{l}^{\text{H}} \left[\boldsymbol{A}_{T} \left(\boldsymbol{A}_{T}^{\text{H}} \boldsymbol{A}_{T} \right)^{-1} \boldsymbol{u}_{\text{SSP},T} + \left(\boldsymbol{I}_{\text{M}} - \boldsymbol{A}_{T} \left(\boldsymbol{A}_{T}^{\text{H}} \boldsymbol{A}_{T} \right)^{-1} \boldsymbol{A}_{T}^{\text{H}} \right) \boldsymbol{z} / h \right]$$

© THALES NEDERLAND B.V. AND/OR ITS SUPF

CoSeRa 2016 False Alarms in Radar Detection within SSP : Numerical Results Range-only in pulse radar with LFM of unit bandwidth B:

- different $\mu(A)$, different K and different SNRs of SW0 targets

 $\mu(A)$ = 0.05

 $\mu(A) = 0.1$

higher sensing coherence: $\mu(A)$ = 0.64

higher $\mu(A)$, e.g. by up-sampling of the estimation grid, makes FAs increase, and hence, deteriorates the performance of detection within SSP

CoSeRa 2016

Detection within SSP obtained with **metrics** $P_{d,SSP}$ and $P_{fa,SSP}$:

- ✓ **generic** : at given sensing coherence and any number of targets
- ✓ proposed test statistic separates targets from false alarms in SSP outcomes
- ✓ results with the test statistic coincide with actual SSP outcomes
 - P_{fa,SSP} stable w.r.t. SNR
 - stable w.r.t. a number of targets at low sensing coherence
 - increase at higher sensing coherence but less than $P_{fa,MF}$
 - outperforms existing radar detection: $P_{fa,SSP} \leq P_{fa,MF}$ (while $P_{d,SSP} = P_{d,MF}$)
- ✓ better interpretation of existing radar-detection theory and practice
 - $P_{fa,MF}$ increases with SNR, sensing coherence and a number of targets
 - in such target cases: no fixed P_{fa} , i.e. no CFAR, is ensured

Thanks ... Questions?

