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Phase-Shift-Based ToF 
 Measure phase shift instead of time: 

◦ Modulated light, typically in the NIR band is emitted to the scene.  
◦ Modulation frequency in the radio frequency range (20-120MHz). 

◦ Reflected light reaches the camera with a delay that is proportional to the total distance from the illumination system 
to the scene point and then to the camera. 

◦ Intelligent pixels, featuring two or more channels (i.e., multitap pixels) are used to internally correlate the incoming 
signal with several reference signals. 

◦ Reference signals with different phase delays are used to sample the cross-correlation function. 
◦  The relative phase shift can be computed from few measurements (cross-correlation samples). 
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Motivation: Pulsed ToF 
 Short pulses instead of CW: 

◦ Instead of continuously emitting a periodic signal, in pulsed ToF a single pulse is emitted and its echo 
is received.  

◦ After a period of inactivity the process is repeated until the desired SNR is attained. 
◦ Reducing the pulse width yields better depth resolution, at the time it allows attaining 

improved SNR without increasing the average illumination power. ✓ 
◦ In a conventional pulsed system, the depth measurement range is fully determined by the pulse 

width. Too short widths yield unacceptably short ranges. ✘ 
◦ One would desire attaining the depth resolution corresponding to the shortest pulse width allowed 

by the hardware, while keeping an arbitrarily large range.  
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The triangular cross-correlation 
function eliminates the need for a 
costly arctangent transformation. 
The depth can be estimated 
linearly from the raw data. 
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CS for Pulsed ToF 
 Goals: 
◦ High depth resolution 
 Short pulses → Limits: drivers and light sources 
 Small discretization steps in time domain 

◦ Large depth range 
 Many discrete steps 

 What is favorable? 
◦ Extreme sparsity of the pulse echo(es) in time domain 

 What is unfavorable? 
◦ Intractable signal dimensionality 
 E.g., desired range: 10m at 1mm resolution yields 𝑛 = 104 dimensions 

◦ Unknown signal support → Needle in the hay 
 Dense sensing matrices ensure that the we don’t miss the support, but… 
 The SNR of the measurements tends to zero as 𝑛 → ∞ 
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Random Sensing Matrices 
 Gaussian: 

◦ Elements drawn from i.i.d. normal random variables, e.g., of zero mean and 1/𝑚 
variance. Good CS matrices, from an RIP perspective.  

 Bernoulli: 
◦ Bernoulli with elements +1 and −1, drawn from i.i.d. Bernoulli random variables with 

𝑝 = 𝑞 = 0.5. Good CS performance, close to that of Gaussian matrices. Binary. 
◦ Bernoulli with elements +1 and 0, drawn from i.i.d. Bernoulli distributions with 

𝑝 = 𝑞 = 0.5. Reportedly bad CS performance1, but binary and sparse. 
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Gaussian sensing matrix Bernoulli sensing matrix 

[1] V. Chandar, “A negative result concerning explicit matrices with the restricted isometry 
property,” Tech. Rep., 2008. 

Reduction of storage requirements by, at least, the bit depth 
used for quantization of the non-binary matrix elements. 



Random Sensing Matrices 
 Performance Evaluation: 

◦ Signal dimensionality 𝑛 = 1024. Number of measurements 𝑚 as a function of the 
sparsity 𝑠. 10 ≤ 𝑠 ≤ 100, 1 ≤ 𝑚

𝑠
≤ 5. 

◦ Coherence Evaluation: 
 
 
 
 
 
 

◦ Sparse Recovery Evaluation: 
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Gaussian Bernoulli +1/-1 Bernoulli +1/0 



Low-Density Binary 
Matrices 
 Objectives: 
◦ Low density, i.e., as few nonzeros per row/column as possible 
◦ High regularity, i.e., the density can be globally defined 
◦ Low coherence 

 Progressive deterministic construction: 
◦ Sequential addition of edges to the corresponding Tanner graph 
◦ Criterion: (local) girth maximization at each edge addition 
◦ Problem: a sequence of optimal decisions does not ensure 

attaining the global optimum, in terms of girth maximization 
◦ Example: 
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1 1 0 1 0 1
0 0 1 1 1 0
0 1 0 0 1 0
1 0 1 0 0 1

 

𝑚 = 4 check 
nodes 

𝑛 = 6 symbol 
nodes 

𝑛 = 6 columns 

𝑚 = 4 
rows 

1 2 3 4 

1 2 3 4 5 6 
Tanner Graph LDPC Matrix 

𝑔𝑙 = 6 



Adaptive Deterministic 
Construction (Algorithm) 
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Adaptive Deterministic 
Construction 
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 How does the sensing matrix look like? 
◦ Progressive Edge Growth (PEG) Baseline (no adaptiveness): 
 

 
 

 
◦ Adaptive PEG (APEG) Construction: 

 
 

 

Strong overlap between sensing kernels support and signal support! 

𝑛 = 1024 
𝑚 = 250 
𝑑𝑐 = 20 
𝑠 = 10 



Adaptive Deterministic 
Construction 
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 Sparse Recovery Evaluation (normalized error): 
◦ Progressive Edge Growth (PEG) Baseline: 
 

 
 

 
◦ Adaptive PEG (APEG) Construction: 

 
 

 

𝑑𝑐 = 20 𝑑𝑐 = 40 𝑑𝑐 = 60 



Conclusions 
 Gaussian and ±1 Bernoulli random matrices 

exhibit excellent CS recovery performance. 
 A construction method of low-density binary 

sensing matrices has been proposed that is both 
deterministic and adaptive. 

 Sensing matrices constructed using our APEG 
method exhibit better recovery performance 
than random and non-adaptive deterministic 
matrices. 

 Densities between 1% and 5% have been 
observed to be sufficient when dealing with 
𝑛 = 1024 dimensions. 
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Thank you for your attention. 

Center for Sensor Systems Graduiertenkolleg 1564 
‚Imaging New Modalities‘ 
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Did you like the idea? 
Then, download the sample code and test the 
performance of the APEG-LDPC matrices yourself! 
https://uni-siegen.sciebo.de/index.php/s/mDKhRTClQoA77I9 

https://uni-siegen.sciebo.de/index.php/s/mDKhRTClQoA77I9
https://uni-siegen.sciebo.de/index.php/s/mDKhRTClQoA77I9
https://uni-siegen.sciebo.de/index.php/s/mDKhRTClQoA77I9
https://uni-siegen.sciebo.de/index.php/s/mDKhRTClQoA77I9
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