Sub-Nyquist Radar with Optimized Sensing Matrices – Performance Evaluation Based on Simulations and Measurements

Hannes Stahl Jan Mietzner Martin Kirscht Robert F.H. Fischer September 22, 2016 AIRBUS DS Electronics and Border Security GmbH, D-89077 Ulm, Germany AIRBUS DS Electronics and Border Security GmbH, D-89077 Ulm, Germany AIRBUS DS Electronics and Border Security GmbH, D-88039 Friedrichshafen, Germany Institute of Communications Engineering, Ulm University, D-89081 Ulm, Germany

Detect and Protect.

Motivation

• Pulse radar can be considered <u>sparse in time</u>: Typically few distinct target objects over range

Motivation

—

- Bandwidth/ range resolution of modern digital radars has gradually increased
- Compressed Sensing (CS) can <u>reduce</u> sampling rates below Nyquist limit while still capturing the essential received information:
 - Generalized sampling (rather than classical ADCs)
 - Non-linear recovery algorithms (rather than conventional signal processing)

Motivation

- Bandwidth/ range resolution of modern digital radars has gradually increased
- Compressed Sensing (CS) can <u>reduce</u> sampling rates below Nyquist limit while still capturing the essential received information:
 - Generalized sampling (rather than classical ADCs)
 - Non-linear recovery algorithms (rather than conventional signal processing)
- Preliminaries:
 - Received signals are sparse w.r.t. some basis
 - Generalized sampling should be conducted in an incoherent domain
- ✓ (time domain)e.g. frequency domain

- Practical issues:
 - Received data contain noise and (possibly) clutter components
 - Target objects may appear extended rather than point-like (due to physical size and/or off-grid effects)

Outline

- Sub-Nyquist Radar Scheme with Generalized Sampling in Fourier domain
 - Optimized Design based on Sparse Rulers
 - Practical Realization using Bandpass Filters
- Performance Analysis based on Simulation Results
 - Perfect Support Reconstruction
 - Relaxed Support Reconstruction
- Application to Real-World Radar Data
 - Air-to-Sea Data from Maritime Mode of Airbus EBS SmartRadar
 - Reconstruction Results
- Conclusions and Future Work

Sub-Nyquist Radar with Generalized Fourier Domain Sampling General Sub-Sampling Scheme

• OMP: Orthogonal Matching Pursuit for non-linear recovery

Sub-Nyquist Radar with Generalized Fourier Domain Sampling

Generalized Nyquist Sampling in the Fourier Domain

• **F:** Discrete Fourier Transform (DFT) matrix \Rightarrow Fourier domain <u>incoherent</u> to time domain

Sub-Nyquist Radar with Generalized Fourier Domain Sampling Idea

- Sub-sampling in Fourier domain by selecting a sub-set of M << N rows of F
- CoSeRa 2015 paper considered selection of
 (a) individual rows
 (b) sub-blocks of B subsequent rows (c sub-blocks, M := c·B)

H. Stahl, J. Mietzner, and R.F.H. Fischer, "A sub-Nyquist radar system based on optimized sensing matrices derived via sparse rulers," in *Proc. Int. Workshop on Compressed Sensing Theory and its Appl. to Radar, Sonar, and Remote Sensing (CoSeRa'15)*, Pisa, Italy, June 2015

Sub-Nyquist Radar with Generalized Fourier Domain Sampling Idea

- Sub-sampling in Fourier domain by selecting a sub-set of M << N rows of F
- CoSeRa 2015 paper considered selection of

 (a) individual rows
 (b) sub-blocks of B subsequent rows (c sub-blocks, M := c·B)

H. Stahl, J. Mietzner, and R.F.H. Fischer, "A sub-Nyquist radar system based on optimized sensing matrices derived via sparse rulers," in *Proc. Int. Workshop on Compressed Sensing Theory and its Appl. to Radar, Sonar, and Remote Sensing (CoSeRa'15)*, Pisa, Italy, June 2015

- In practical system sub-sampling would be conducted in <u>analog</u> domain
- Option (b) seems more attractive for hardware implementation, since it can be realized with few bandpass filters (BPFs), e.g. c < 10

Sub-Nyquist Radar with Generalized Fourier Domain Sampling

- Sub-sampling in Fourier domain by selecting a sub-set of M << N rows of F
- CoSeRa 2015 paper considered selection of

 (a) individual rows
 (b) sub-blocks of B subsequent rows (c sub-blocks, M := c·B)

H. Stahl, J. Mietzner, and R.F.H. Fischer, "A sub-Nyquist radar system based on optimized sensing matrices derived via sparse rulers," in *Proc. Int. Workshop on Compressed Sensing Theory and its Appl. to Radar, Sonar, and Remote Sensing (CoSeRa'15)*, Pisa, Italy, June 2015

- In practical system sub-sampling would be conducted in <u>analog</u> domain
- Option (b) seems more attractive for hardware implementation, since it can be realized with few bandpass filters (BPFs), e.g. c < 10
- Care must be taken concerning the <u>spacing</u> of the BPFs in frequency domain
- It turns out that the overall bandwidth extent (*aperture A*) has significant impact

Sub-Nyquist Radar with Generalized Fourier Domain Sampling Idea (cont.)

• S_B : Block selection matrix (M x N), $\Phi := S_B F$

Sub-Nyquist Radar with Generalized Fourier Domain Sampling Idea (cont.)

- For good recovery performance, spacing of BPFs should be ,irregular
- Baranski et al. proposed corresponding scheme with c=4 BPFs; spacing optimized heuristically
 E. Baransky, G. Itzhak, N. Wagner, I. Shmuel, E. Shoshan, and Y. Eldar, "Sub-Nyguist radar prototype: Hardware and algorithm,"

IEEE Trans. On Aerosp. and Electr. Systems, vol. 50, no. 2, pp. 809–822, Apr. 2014.

Sub-Nyquist Radar with Generalized Fourier Domain Sampling Idea (cont.)

- For good recovery performance, spacing of BPFs should be ,irregular'
- Baranski et al. proposed corresponding scheme with c=4 BPFs; spacing optimized heuristically
 E. Baransky, G. Itzhak, N. Wagner, I. Shmuel, E. Shoshan, and Y. Eldar, "Sub-Nyquist radar prototype: Hardware and algorithm," *IEEE Trans. On Aerosp. and Electr. Systems*, vol. 50, no. 2, pp. 809–822, Apr. 2014.
- In CoSeRa 2015 we showed:
 - Placing BPFs according to marks of <u>optimal sparse ruler (OSR)</u> offers good recovery performance for arbitrary sub-sampling q = M/N and numbers of BPFs c
 - Superior to random placement of the BPFs

Sub-Nyquist Radar with Generalized Fourier Domain Sampling

Practical Realization using Bandpass Filters

<u>Analog domain</u>: Sampling via c parallel BPFs

Outline

- Sub-Nyquist Radar Scheme with Generalized Sampling in Fourier domain
 - Optimized Design based on Sparse Rulers
 - Practical Realization using Bandpass Filters
- Performance Analysis based on Simulation Results
 - Perfect Support Reconstruction
 - Relaxed Support Reconstruction
- Application to Real-World Radar Data
 - Air-to-Sea Data from Maritime Mode of Airbus EBS SmartRadar
 - Reconstruction Results
- Conclusions and Future Work

Performance Analysis based on Simulation Results Perfect vs. Relaxed Support Reconstruction

- <u>Task</u>: Recover delays (ranges) $t_k \approx n_k \cdot \Delta$ of K point targets based on measurement equation $y = \Phi \cdot x = S_B \cdot F \cdot x$
 - ⇒ Support reconstruction problem (as **x** is approximately sparse) (Δ : grid-size that would result from Nyquist sampling, n_k integer = range cell index)

Performance Analysis based on Simulation Results Perfect vs. Relaxed Support Reconstruction

• <u>Task</u>: Recover delays (ranges) $t_k \approx n_k \cdot \Delta$ of K point targets based on measurement equation $y = \Phi \cdot x = S_B \cdot F \cdot x$

 \Rightarrow Support reconstruction problem (as **x** is approximately sparse) (Δ : grid-size that would result from Nyquist sampling, n_k integer = range cell index)

- <u>Two cases considered</u>:
 - (a) Perfect support reconstruction \Rightarrow Detections of OMP must exactly fit the range cell indices n_k
- (b) Relaxed support reconstruction \Rightarrow Detections of OMP may be within tolerance window {n_k- ϵ , ..., n_k+ ϵ } (ϵ : denoted as *scope*)

Performance Analysis based on Simulation Results Perfect Support Reconstruction

- <u>Perfect support reconstruction</u>: *Worst-case coherence* μ_{Φ} of measurement matrix Φ known to be a good substitute for resulting probability of detection P_d
- Worst-case coherence is *maximum correlation* $\rho(n,n')$ between any two columns n, n' of $\Phi(n' \neq n)$
- For considered sub-sampling in Fourier domain it suffices to consider only correlations $\rho(n,1)$, n = 2, ..., N

Performance Analysis based on Simulation Results Perfect Support Reconstruction

- <u>Perfect support reconstruction</u>: *Worst-case coherence* μ_{Φ} of measurement matrix Φ known to be a good substitute for resulting probability of detection P_d
- Worst-case coherence is *maximum correlation* $\rho(n,n')$ between any two columns n, n' of $\Phi(n' \neq n)$
- For considered sub-sampling in Fourier domain it suffices to consider only correlations $\rho(n,1)$, n = 2, ..., N
- In CoSeRa 2015 we showed: Correlations ρ(n,1) can easily be calculated via DFT of selection vector s_B (corresponding to matrix S_B)
 - \Rightarrow Efficient calculation of μ_{Φ} possible, e.g. based on a FFT of s_{B}
 - ⇒ Very useful e.g. for optimizing the aperture value A of the sub-Nyquist radar scheme (for given parameters N, M, c, B)

$$\rho_{\mathbf{\Phi}}(n,1) \propto ||[\mathbf{F} \cdot \mathbf{s}_B]_n|| \quad \rightarrow \mu_{\mathbf{\Phi}} = \max_{n \in \{2,\dots,N\}} \rho_{\mathbf{\Phi}}(n,1)$$

Performance Analysis based on Simulation Results

Perfect Support Reconstruction

• <u>Example:</u> Optimization of aperture value A for c=4 BPFs spaced according to OSR

Performance Analysis based on Simulation Results Relaxed Support Reconstruction

- <u>Relaxed support reconstruction ($\epsilon > 0$)</u>: Strong correspondence between worst-case coherence μ_{Φ} and resulting detection performance does not hold anymore
- In fact, when increasing ϵ smaller aperture values A become optimal
- Reasonable, as we essentially allow for a coarser range resolution, which can generally be achieved by smaller overall signal bandwidth (corresponding to a smaller aperture value A)

Performance Analysis based on Simulation Results

Relaxed Support Reconstruction

• Simulation results for detection probability P_d for different numbers of target objects K (optimized aperture A)

 \Rightarrow Even for K=12 targets P_d-value of 93% achieved for sufficiently high SNRs

Performance Analysis based on Simulation Results

Relaxed Support Reconstruction

• Simulation results for detection probability P_d for different sub-sampling factors q (optimized apertures A)

 \Rightarrow Results show well-known relation between parameters N, M, K (i.e., for good performance N >> M >> K)

Outline

- Sub-Nyquist Radar Scheme with Generalized Sampling in Fourier domain
 - Optimized Design based on Sparse Rulers
 - Practical Realization using Bandpass Filters
- Performance Analysis based on Simulation Results
 - Perfect Support Reconstruction
 - Relaxed Support Reconstruction
- Application to Real-World Radar Data
 - Air-to-Sea Data from Maritime Mode of Airbus EBS SmartRadar
 - Reconstruction Results
- Conclusions and Future Work

Air-to-Sea Data from Maritime Mode of Airbus EBS SmartRadar

- Sub-Nyquist radar scheme with Fourier domain sub-sampling and BPF placement according to OSRs was applied to real-world air-to-sea radar data collected with Airbus EBS SmartRadar
 - <u>Purpose:</u> Capture realistic clutter/ noise scenarios, off-grid effects & physically extended targets

Airbus EBS SmartRadar pod mounted under wing of a Learjet 35

Pod includes radar sensor, AESA antenna, core electronics, on-board processing unit and data recorder

Supported by German MOD

Air-to-Sea Data from Maritime Mode of Airbus EBS SmartRadar

- Sub-Nyquist radar scheme with Fourier domain sub-sampling and BPF placement according to OSRs was applied to real-world air-to-sea radar data collected with Airbus EBS SmartRadar
 - Processing done completely in digital domain by sub-sampling high-rate ADC data (retroactively)

Air-to-Sea Data from Maritime Mode of Airbus EBS SmartRadar

- Sub-Nyquist radar scheme with Fourier domain sub-sampling and BPF placement according to OSRs was applied to real-world air-to-sea radar data collected with Airbus EBS SmartRadar
 - \rightarrow Exemplary reconstruction result (c = 4 BPFs, OSR; sub-sampling factor q = 2.7%)

Air-to-Sea Data from Maritime Mode of Airbus EBS SmartRadar

- Sub-Nyquist radar scheme with Fourier domain sub-sampling and BPF placement according to OSRs was applied to real-world air-to-sea radar data collected with Airbus EBS SmartRadar
 - \rightarrow Generally, reconstruction results were stable for sufficient SNR/ SCR and target object spacing

Conclusions and Future Work Summary

- Investigated performance of a <u>practicable sub-Nyquist radar system</u> based on a set of parallel BPFs for extracting range information of sparse target objects
- Positions of BPFs in frequency domain optimized based on OSR approach
- Performance of OMP for non-linear recovery step
 - <u>Perfect range recovery</u>: Direct correspondence between worst-case coherence of measurement matrix and probability of missed detection; useful for optimizing aperture
 - <u>Relaxed range recovery</u>: Direct correspondence does not hold anymore; smaller aperture values tend to be optimal compared to perfect range recovery
- <u>Simulation results:</u> Sub-Nyquist radar system achieves detection probabilities > 90% for various numbers of target objects and sub-sampling factors, as long as SNR is sufficiently high (on the order of 12...20 dB)
- Sub-Nyquist radar scheme successfully applied to <u>real air-to-sea radar data</u> recorded with Airbus EBS SmartRadar pod system

Conclusions and Future Work Topics for Future Work

- More detailed investigations concerning application of sub-Nyquist radar scheme to real radar data
- New methods for optimizing the aperture value in case of relaxed range recovery (so far done by means of computer search)
- Extension of sub-Nyquist radar scheme to (practically relevant) scenario where number of target objects is not known a-priori