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 General about sensing 

 (Interference and deviations from sparsity) 

 Continuous recovery 

 Random (?) projections 

 Large scenes, large rawdata 

 Non-linear sensing 

 Higher level information retrieval 

 

 

 

 



CS – A MATHEMATICAL TOOL 
Solution of underdetermined systems of linear equations ... 

 Compressive sensing techniques generally deal underdetermined systems 
of  linear equations of the type   y = A x : 

y  =              A               x 

N M 

M x N  

M < N  

 Under certain conditions on A there is an unique solution for S-sparse x .  

A wonderful 
theory! 

‘Solution of 
underdetermined systems 
of linear equations under 

sparsity constraints’ 

‘Compressive sensing’ 
sounds much better! 





APPLICATION OF CS TO REAL WORLD SENSORS (RADAR) 
Questions to be asked 

 What are the reasons to apply CS to a special radar task? 

 Sparing samples? (temporal, spatial, ...) 

 Better performance? (super resolution, image quality, additional 
information,...) 

 Power budget preserved? 

 Computing effort? 

 Robustness, stability? 

 Guarantee to fulfill the specs? 



CHALLENGE I:  INTERFERENCE, 
DEVIATIONS FROM SPARSITY 

The concept of ‘compressible signals’ , i.e. deviations 
from exact sparsity, and the robustness against 
interference have been treated adequately in the 
mathematical theory.  

  P 



CHALLENGE II: CONTINUOUS 
RECOVERY 

 

A lot of papers on the ‘off-
grid problem’ or ‘continuous 
sparse recovery’ have been 
published. Nevertheless … 



CHALLENGE II: CONTINUOUS RECOVERY 
Simulated scene with points between the grids 
 
 The scene model for CS is in principle discrete and finite, the real world is 

continuous. Prob(Position at a grid point) = 0. 

Positions uniformly randomly 

chosen. 

 

Top: reconstruction with 

matched filter.  

Bottom: reconstruction with  

l1-minimization.  

 

The markers indicate the true 

values.  

 

N = 500, M = 100, S = 5, noise 

= -30dB, partial Fourier matrix. 

Not an ‘off-grid’ 
problem... 

... but a problem 
of a wrong 

model for the 
real world! 



CHALLENGE II: CONTINUOUS RECOVERY 
Hidden sidelobes 

true positions 

grid 

shift to zero 

accumulate and 
build histogram 

0 0 



Monte Carlo Simulation 

using spgl1 for sparse recovery 

N = 128; 

M = 50; 

Noise -30 dB; 

Number of iterations = 10 000; 

CHALLENGE II: 
CONTINUOUS RECOVERY 
Hidden sidelobes 
 

Histogram 



CHALLENGE II: CONTINUOUS RECOVERY 
Model and approaches 

CS-Estimator of a spiky scene 



CHALLENGE II: CONTINUOUS RECOVERY 
How to measure the performance? 

may coincide with the 
grid points 

‘spiky’ scene 

estimated scene 
(‘spiky’ too)  

How to 
measure the 

reconstruction 
quality? 



CHALLENGE II: CONTINUOUS RECOVERY 
A new performance measure (to be discussed!) 

is a window centered at 0 e.g. 

Scene 

where        corresponds to the CRB 



(1)  Scene point with window  

(2) Estimated scene  

(3) Real part of product of             
 (1) and (2)*  

CHALLENGE II: CONTINUOUS RECOVERY 
A new performance measure (to be discussed!) 



CHALLENGE II: CONTINUOUS RECOVERY 
Ways to overcome the grid bondage 

1.Refinement of grid 

2.Gradient based 

3.Adaptive raster points 

Some papers 
about off-grid 

and gridless CS 



    N0 = 500    # resolution cells 

    N = N0 ... 5000 

    Oversampling = 1 ... 10 

    M = 200 

    S = 10 

    # Simulations = 400 

    dBnoise=-25; 

 

CHALLENGE II: CONTINUOUS RECOVERY 
1. Approach: Refinement of grid 

Resolution cell / 
raster =1.0 

Computed with ‘spgl1’ 



CHALLENGE II: CONTINUOUS RECOVERY 
1. Approach: Refinement of grid 

    N0 = 500    # resolution cells 

    N = N0 ... 5000 

    Oversampling = 1 ... 10 

    M = 200 

    S = 10 

    # Simulations = 400 

    dBnoise=-25; 

 

Resolution cell / 
raster = 4.0 

Computed with ‘spgl1’ 



CHALLENGE II: CONTINUOUS RECOVERY 
1. Approach: Refinement of grid 

    N0 = 500    # resolution cells 

    N = N0 ... 5000 

    Oversampling = 1 ... 10 

    M = 200 

    S = 10 

    # Simulations = 400 

    dBnoise=-25; 

 

Resolution cell / 
raster = 7.0 

Computed with ‘spgl1’ 



CHALLENGE II: CONTINUOUS RECOVERY 
1. Approach: Refinement of grid 

    N0 = 500    # resolution cells 

    N = N0 ... 5000 

    Oversampling = 1 ... 10 

    M = 200 

    S = 10 

    # Simulations = 400 

    dBnoise=-25; 

 

Resolution cell / 
raster = 10.0 

Computed with ‘spgl1’ 



CHALLENGE II: CONTINUOUS RECOVERY 
Performance measure for decreasing grid spacing  

Computed with ‘spgl1’ 

 
Performance 
grows with 

decreasing grid 
spacing 

 
OMP performs 
better than BPDN 
for decreasing 
grid spacing 



CHALLENGE II: CONTINUOUS RECOVERY 
Performance measure for decreasing grid spacing  

 
Don’t care about 
coherency (and RIP, null 
space property,...) !? 
 



CHALLENGE II: CONTINUOUS RECOVERY 
2. Approach: Add Taylor components 

Addition of new columns 
(gradients) to the sensing 
matrix 

Linear approximation 



CHALLENGE II: CONTINUOUS RECOVERY 
2. Approach: Add Taylor components 

A case for block-sparse 
recovery! 

Groups 

C. Ekanadham, D. Tranchina and E. P. Simoncelli, 
"Recovery of Sparse Translation-Invariant Signals With 
Continuous Basis Pursuit, 2011 



Reconstruction with mixed l1-l2-minimization 

Computed with ‘spg_group’ 

Res.-cell 

 N = 500 
 M= 163 
 S = 5 
 Noise=-25 dB 

Res.-cell 

Coherence of 
the combined 
sensing matrix  
 0.6 

CHALLENGE II: CONTINUOUS RECOVERY 
2. Approach: Add Taylor components 



N = 500 

S = 5 

Noise = -25 dB 

CHALLENGE II: CONTINUOUS RECOVERY 
2. Approach: Add Taylor components, performance 



 Iteration: 

 The grid points are shifted according to the actual estimation of displacements 

 Re-applied sparse recovery 

 Next iteration 

 Especially interesting for target tracking 

 Application example: Passive radar  
network (PCL), Block-sparse recovery 

CHALLENGE II: CONTINUOUS RECOVERY 
3. Approach: Adaptive grid 

PCL PCL 

DAB 

TVB-T 

FM 



Search grid 

Track grid 

turned off 
positions 

 Fixed search grid for the detection of new airplanes 

 Dynamic track grid for tracked airplanes, basis for evaluating the 
remainders by projection 

 Fine estimate of positions (here obtained by a second order Taylor 
approximation) can be integrated into the BOMP iteration 

Ender, J.H.G., "A compressive sensing 
approach to the fusion of PCL sensors," 
EUSIPCO 2013 

CHALLENGE II: CONTINUOUS RECOVERY 
3. Approach: Adaptive grid 



True positions of airplanes marked by blue circles f0                      400 MHz 

Lambda0                  0.75  m 

Bandwidth             0.07 MHz 

Resolution           2.142 m 

NTx       3 

NRx                   6 

Narray                 2 

L  (number 
sensors)   

6 

Nk                     94 

Mtotal                   1692 

Image       151 x 114 

N                     17214 

SNR 20 dB 

Simmax    500 

Computed with BOMP 

CHALLENGE II: CONTINUOUS RECOVERY 
3. Approach: Adaptive grid, tracking 



Challenge III: RANDOM (?)  
PROJECTION  



- 29 - 

DMD: Digital micromirror device 

RNG: Random number generator 

CHALLENGE III: RANDOM (?) PROJECTION 
Famous example: Rice Univ single-pixel camera 
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CHALLENGE III: RANDOM (?) PROJECTION   

Representation basis Signal model 

Projection 

M
e

a
su

re
m

e
n

ts
 

C
o

e
ff

ic
ie

n
ts

 

Scene (e.g. reflectivity) Signals at sensor 
(e.g. at aperture) 

Features 
Output 

Selection 
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CHALLENGE III: RANDOM PROJECTION (?) 
Applied to array antennas 
  

SNR-loss! 

Sparing elements, channels 
and costs 



THEOREMS FOR SPARSE RECONSTRUCTION  
Random selection of sensing waveforms 
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CHALLENGE III: RANDOM PROJECTION (?) 
Why to use random projections / selections? 
  

 Just to be compatible to the theorems? 

 

Deterministic projections / selections? 

1. Heuristic choice 

2. Optimum sparse ruler 

3. Random search 

 

Some papers 
about 

deterministic 
dimension 
reduction 



CHALLENGE III: RANDOM PROJECTION (?) 
Naive guess of a deterministic thinning 

Example 

Positions = 

[0     1     3     6    
10    15    21    28    
36    45    55    66 
78    91   105   120] 

M = 16 

N = 121 

 

Computed with ‘spgl1’ 



CHALLENGE III: RANDOM PROJECTION (?) 
Naive guess of a deterministic thinning 

Example 

Positions = 

[0     1     2     3     4     6     8    
10    12    15    18    21 24    
28    32    36    40    45    50    
55    60    66    72    78 84    
91    98   105   112   120   
128   136   144   153   162   
171180   190   200   210   
220   231   242   253   264] 

M = 45 

N = 265 

Computed with ‘spgl1’ 



CHALLENGE III: RANDOM PROJECTION (?) 
Optimum sparse ruler  

Example 

Positions = 

[0, 1, 2, 5, 10, 15, 26, 37, 48, 
54, 60, 66, 67, 68] 

M = 14 

N = 69 

Computed with ‘spgl1’ 



CHALLENGE III: RANDOM PROJECTION (?) 
Random search for optimum selection 

 200 random selections 

 For each selection 

 Simulation of 200 
scenes and 
reconstructions 

 Selection with maximum 
probability of success 
fixed 

 Further 400 simulations 
of scenes and 
reconstructions 

 Comparison with non-
optimized random 
selection 

Computed with ‘spgl1’ 



CHALLENGE III: RANDOM PROJECTION (?) 
Optimized random selection 

Example 

M = 100 

N = 500 

optimized for S=14 

Computed with ‘spgl1’ 



Challenge IV: LARGE SCENES / 
RAWDATA 

 

For radar techniques as SAR  the 
sensing matrices are for common 
scene sizes much too large to 
apply CS algorithms. 

We propose a mosaicing 
technique based on ‘pre-focus’ 



CHALLENGE IV: LARGE SCENES / RAWDATA 
Principle of pre-focusing / mosaicing 

See also: 
S. Qin, Y. D. Zhang, Q. Wu and M. G. Amin, "Large-scale sparse reconstruction through 
partitioned compressive sensing," 2014 19th International Conference on Digital Signal 
Processing, Hong Kong, 2014, pp. 837-840. 



The aim is now to choose P in such a way that A obtains the form of a band 
matrix. 

CHALLENGE IV: LARGE SCENES / RAWDATA 
Principle of pre-focusing / mosaicing 

Original large-sized linear equation system 

Application of a pre-focus operator 

~ 



CHALLENGE IV: LARGE SCENES / RAWDATA 
Principle of pre-focusing / mosaicing 

Pre-focused sensing matrix 

Used measurements 
for one mosaic piece 

Contributing scene 
indices 

This part of the 
reconstructed 

coefficient vector 
is used for 
mosaicing 



 To achieve approximately the form of a band-matrix, the data in the (spatial) 
frequency domain are pre-focused by a low-pass.  

 This has to have very low sidelobes, and an adequate passband interval large 
enough to preserve enough information.  

CHALLENGE IV: LARGE SCENES / RAWDATA 
Principle of pre-focusing / mosaicing (1D) 

Transfer functions Point spread functions 



 Simulation: Comparison of a direct and a mosaiced recovery 

CHALLENGE IV: LARGE SCENES / RAWDATA 
Principle of pre-focusing / mosaicing (1D) 

Direct recovery Mosaiced recovery 

N = 4000, M = 2000 

S = 20,  #Segments = 5 

 



 Real data recorded by Fraunhofer AER-II 

 Size of the processed SAR-Image: 1991 x 751 = 1 495 241 Pixel 

 Number of Mosaic-Pieces: 35 x 35 = 1225 

CHALLENGE IV: LARGE SCENES / RAWDATA 
Principle of pre-focusing / mosaicing (2D) 

Point scatterer 

Point spread function 
of pre-focused image 

Used reconstructed 
part of the scene 

Reconstructed part of 
the scene 



Overview image 

Conventional processed 

Reflectivity of man-made 
areas like an airport may 
be assumed to be sparse 
(or compressible) 

CS image 



MOSAICING FOR CS-PROCESSING OF A SAR-IMAGE 

Fine image grid + CS  
= super resolution! 



Challenge V: NON-LINEAR 
SENSING 



CHALLENGE V: NON-LINEAR SENSING 
Example: e-layer retrieval 

We regard a material probe composed of K homogeneous lossless plane plates 
with different permittivities with relative dielectric constants ϵ1,...,ϵK which are 
assumed to be constant over the measured frequency range and thicknesses 
d1,...,dK which are unknown. 

There are only a few layers. 

The S-parameters are measured over a range of frequencies. 

Determine ϵ1,...,ϵK and d1,...,dK!  



CHALLENGE V: NON-LINEAR SENSING 
Example: e-layer retrieval (simulation) 

Original e-layers and local reflection 
coefficients 

Measured S-parameters in time domain 



CS-solution: The model of the probe is divided into N thin slices of equal 
relative electrical lengths       , within which a constant e is assumed.   

Chain matrix for e-jump: Chain matrix for passing the slice: 

CHALLENGE V: NON-LINEAR SENSING 
Example: e-layer retrieval 

r=reflection coefficient at a slice transition 



Chaining the chain-matrices: 

CHALLENGE V: NON-LINEAR SENSING 
Example: e-layer retrieval 

Idea of CS-recovery of the internal reflection coefficients: 

Vector of measurements over 
the frequencies: 



CHALLENGE V: NON-LINEAR SENSING 
Example: e-layer retrieval 



CHALLENGE V: NON-LINEAR SENSING 
Example: e-layer retrieval 

Internal reflection coefficients Reconstruction of e-layers 



Challenge VI: HIGHER LEVEL 
INFORMATION RETRIEVAL 

 



CHALLENGE VI: HIGHER LEVEL INFORMATION RETRIEVAL 
View behind the curtain – Raw data to information converter 

Rekonstruierte 

Szene 

Phys. trans-

formation 

x 

Scene 

Object classes 

and -structures 

Image processor 

x 

Scene model 

(Point 

scatterers) 

CS: Raw data to 

information 

converter 

Image 

exploitation Information 

Sensor 

Measure-

ments 
Raw data 



CHALLENGE VI: HIGHER LEVEL INFORMATION RETRIEVAL 
Extraction of scatterers at straight lines in ISAR data  

 The scatterers on man made targets are often arranged along straight lines 

 

 Traditional approach:  

 Form an image 

 Apply methods like Hough-transform to identify straight lines 

 Our approach:  

 Find a small number of lines explaining the measurements due to scatters 
placed on these lines largely! 

 A case for block sparse recovery 



A finite set of potential lines has to be provided as well as a set of points 
along each line. 

Model for the measurements, arranged as a column vector: 

Number of lines 

Number of grid 
points on lane n 

coefficients 
(reflectivity) 

Signal vector for 
point m on line n 

Noise 

Measurement 

CHALLENGE VI: HIGHER LEVEL INFORMATION RETRIEVAL 
Extraction of scatterers at straight lines in ISAR data  



Model for the measurements, arranged as a column vector: 

CHALLENGE VI: HIGHER LEVEL INFORMATION RETRIEVAL 
Extraction of scatterers at straight lines in ISAR data  

Amplitude rms of 
line n (l2 norm) l1 norm of rms 

vector 

Rest not 
explained by 
sparse model 



Goal (sparsity in the occupied planes): 
Find as few as possible lines explaining the measurement with a remaining 
error at noise level! 
Grid of potential lines and points required! 

Mixed           norm approach: 
Minimize 

Amplitude rms of 
line n (l2 norm) l1 norm of rms 

vector 

Rest not 
explained by 
sparse model 

CHALLENGE VI: HIGHER LEVEL INFORMATION RETRIEVAL 
Extraction of scatterers at straight lines in ISAR data  



Alternative: Block Orthogonal Matching Pursuit (BOMP) 

 it = 1 

 Find line with maximum accumulated energy 

 Iterate 

 Calculate remainder for the measurement projected to the space 
spanned by the signals for the points of all planes found until now. 

 Find plane with maximum energy with regard to the remainder 

 it=it+1 

 Until the rest can be explained by noise 

CHALLENGE VI: HIGHER LEVEL INFORMATION RETRIEVAL 
Extraction of scatterers at straight lines in ISAR data  



62 

Principle of line-
grid and point-
grids on the lines 

CHALLENGE VI: HIGHER LEVEL INFORMATION RETRIEVAL 
Extraction of scatterers at straight lines in ISAR data  



Simulation 

Original scene Fourier reconstruction CS-lines reconstr. 

CHALLENGE VI: HIGHER LEVEL INFORMATION RETRIEVAL 
Extraction of scatterers at straight lines in ISAR data  



ISAR-Image of a satellite, recorded by the FHR-radar TIRA 

CHALLENGE VI: HIGHER LEVEL INFORMATION RETRIEVAL 
Extraction of scatterers at straight lines in ISAR data  



CHALLENGE VI: HIGHER LEVEL INFORMATION RETRIEVAL 
Extraction of scatterers at straight lines in ISAR data  





Thank you for listening! 


