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Motivation
We collect a large amount of - indirect measurements - of any sort
of relevant information:

Brain section acquired by Magnetic

Resonance Imaging

Aggregated statistical data (e.g.

aggregated energy consumption)

Structure of a molecule recovered by X-ray

crystallography

Sampling streams of data



From large to small

The measurements of large amount of interesting data allow us to
distill some aggregated information about the data ...

I How much information are we able to capture?

I Is this information enough to allow us to get a sketch of the
original data?
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A few references

I A Mathematical Introduction to Compressive Sensing (Holger
Rauhut and Simon Foucart), Birkhäuser-Springer, 2013.

I Numerical methods for sparse recovery book chapter in
“Theoretical Foundations and Numerical Methods for Sparse
Recovery”, M. Fornasier (ed.) Radon Series in Applied and
Computational Mathematics 9, de Gruyter, 2010

I Compressive Sensing (Massimo Fornasier and Holger Rauhut),
book chapter in “Handbook of Mathematical Methods in
Imaging” Springer.

I An Overview on Algorithms for Sparse Recovery (Massimo
Fornasier and Steffen Peter) book chapter in “Sparse
Reconstruction and Compressive Sensing in Remote Sensing”,
X. Zhu and R. Bamler (ed.), Springer, 2015.

Publications:
https://www-m15.ma.tum.de/Allgemeines/PublicationsEN

Software:
https://www-m15.ma.tum.de/Allgemeines/SoftwareSite

https://www-m15.ma.tum.de/Allgemeines/PublicationsEN
https://www-m15.ma.tum.de/Allgemeines/SoftwareSite


The world we wish to capture is sparse!

I A music is a stream of a finite number of notes: few
frequencies (and their harmonics) are simultaneously active at
each time;

I A natural image is made of piecewise smooth parts and a few
edges;
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The world we wish to capture is sparse!

I Consumer behaviors can often be subdivided into few
categories;

I To optimally control the emergency evacuation of a crowd
from a room, we just need only a few informed agents ...
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Let us then assume that our data are sparse!
In many circumstances it is legitimate to assume that our data
x̄ ∈ RN are indeed “sparse”, i.e., they can be described by using a
few “words” of a given “dictionary” D = {e1, e2, . . . eN} ⊂ RN .

In mathematical terms we assume

x̄ = x1e1 + x2e2 + . . . xNeN ,

for x = (x1, . . . , xN) a sparse vector of RN . By sparse we mean
that

‖x‖`N0 := #{xi 6= 0} ∼ log(N).

For some classes C of data, the dictionary is known (for instance
for music, local Fourier bases are a good dictionary, while for
images wavelets do the job).

The problem of identifying a sparsifying dictionary DC given a class
of data C = {x̄} is called dictionary learning, but we will not
address it here.
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Recovering a sketch of our data from distilled information

Given a sparse vector x ∈ RN representing our data, we assume to
operate linear measurements A ∈ Rm×Non it, distilling aggregated
information y ∈ Rm on x , for m ∼ ‖x‖`N0 i.e.,

y = Ax .

Can we recover x , at least approximatively? Since the matrix A is
not squared (hence not invertible), this question is not trivial and
we need to define a proper solution concept.

Occam’s razor: the simplest explanation is often the good one!
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Introduction to sparse recovery

We address the numerical solution of problems of the type:

(`0) min ‖x‖`N0 subject to ‖Ax − y‖`m2 ≤ ε;

(`1) min ‖x‖`N1 subject to ‖Ax − y‖`m2 ≤ ε;

where
x ∈ RN , A ∈ Rm×N , m ≤ N

‖x‖`N0 := # supp(x), ‖x‖`Np =

{ (∑N
i=1 |xj |p

)1/p
, 0 < p <∞,

maxj=1,...,N |xj |, p =∞.

The matrix A is called the measurement matrix, which is distilling
from x an aggregated (compressed) information y .
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Adaptive VS Nonadaptive

These optimizations have been greatly popularized by the
development of the field of nonadaptive compressed acquisition of
data, the so-called compressed sensing (Donoho,
Candés-Romberg-Tao ’06).

(��) Adaptive compressed acquisition

(}}) Nonadaptive compressed acquisition
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Adaptive compressed acquisition

Let k ∈ N, k ≤ N and

Σk := {x ∈ RN : # supp(x) ≤ k},

is the set of vectors with at most k nonzero entries, which we will
call k-sparse vectors.

The best k-term approximation error that we
can achieve in this set to a vector x ∈ RN with respect to a
suitable space quasi-norm ‖ · ‖X is defined by

σk(x)X = inf
z∈Σk

‖x − z‖X .
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Adaptive compressed acquisition

Example

Let r(x) be the non-increasing rearrangement of x , i.e.,
r(x) = (|xi1 |, . . . , |xiN |)T and |xij | ≥ |xij+1

| for
j = 1, . . . ,N − 1.

Then it is straightforward to check that

σk(x)`Np :=

 N∑
j=k+1

rj(x)p

1/p

, 1 ≤ p <∞.

In particular, the vector x[k] derived from x by setting to zero all
the N − k smallest entries in absolute value is called the best
k-term approximation to x and it coincides with

x[k] = arg min
z∈Σk

‖x − z‖`Np .

for any 1 ≤ p <∞.
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Adaptive compressed acquisition

The computation the best k-term approximation of x ∈ RN , in
general requires the search of the largest entries of x in absolute
value, and therefore the testing of all the entries of the vector x :

I I go to Aachen

I I get a 10M pixel picture x̄ of the Super C

I I go back home

I I realize that the picture x̄ is too big

I I compute a complete, i.e., wavelet or Fourier
decomposition x of the image x̄

I I eventually keep ONLY the best k-term
approximation x[k] w.r.t. to wavelet or Fourier
coordinates (JPEG)

This procedure is adaptive, since it depends on the particular
vector.
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Compressing Super C



Nonadaptive and compressed acquisition: compressed
sensing

We would like to describe a linear encoder which allows to
compute approximatively k measurements (y1, . . . , yk)T and a
nearly optimal approximation of x :

Provided a set K ⊂ RN , there exists a linear map A : RN → Rm,
with m ≈ k and a possibly nonlinear map ∆ : Rm → RN such
that

‖x −∆(Ax)‖X ≤ Cσk(x)X

for all x ∈ K .
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Note that

I the way we encode x is via a prescribed map A which is
independent of x as well as the decoding procedure ∆. This
is why we call this strategy a nonadaptive (or universal) and
compressed acquisition of x ;

I we recover an approximation to x from nearly k-linear
measurements which is of the order of the k-best
approximation error. In this sense we say that the
performances of the encoder/decoder system (A,∆) is
nearly optimal.

‖x −∆(Ax)‖X ≤ Cσk(x)X
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An optimal decoder

Under a certain property, called the Null Space Property (NSP),
depending on k ≤ N, for a matrix A,

the decoder, which we call `1-minimization,

∆(y) = arg min
Az=y=Ax

‖x‖`N1

performs
‖x −∆(y)‖`N1 ≤ C1σk(x)`N1

,

as well as

‖x −∆(y)‖`N2 ≤ C2

σk(x)`N1
k1/2

,

for all x ∈ RN .
The next question we will address is the existence of matrices A
with NSP for which k is optimal, i.e.,

k ≈ m.
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Surprising result

Property
‖x −∆(y)‖`N1 ≤ C1σk(x)`N1

,

ensures that if the vector x ∈ Σk , then `1-minimization will be able
to recover it exactly, as x = x[k] and σk(x[k]) = 0.

This result is
quite surprising because the problem of recovering a sparse vector,
or the solution of the following optimization

min ‖x‖`N0 subject to Ax = y ,

is know to be NP-complete (Mallat-Zhang ’93, Natarajan ’95) .
Instead interior-point methods are guaranteed to solve the
`1-minimization problem to a fixed precision in time O(m2N1.5)
(Nesterov-Nemirovskii ’94).
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Convexification

One rewrites

‖x‖`N0 :=
N∑
j=1

|xj |0, |t|0 :=

{
0, t = 0
1, 0 < t ≤ 1

.

Its convex envelope in B`N∞(R) ∩ {z : Az = y} is bounded below by
1
R ‖x‖`N1 := 1

R

∑N
j=1 |xj |.



Geometry

Assume N = 2 and m = 1.
Hence F(y) = {z : Az = y} is
just a line in R2. If we exclude
that there exists η ∈ ker A
such that |η1| = |η2| or,
equivalently,

|ηi | < |η{1,2}\{i}|

for all η ∈ ker A and for one
i = 1, 2, then the solution to
(`1) is a solution of (`0).



Null Space Property (NSP)

Definition
One says that A ∈ Rm×N has the Null Space Property (NSP) of
order k for 0 < γ < 1 if

‖ηT‖`N1 ≤ γ‖ηT c‖`N1 ,

for all sets T ⊂ {1, . . . ,N}, #T ≤ k and for all η ∈ N = ker A.

I The NSP is equivalent to stable recovery, i.e.,

‖x −∆(y)‖`N1 ≤ C1σk(x)`N1
⇒ NSP;

I the NSP is used in algorithms to prove convergence rates and
stability.
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One says that A ∈ Rm×N has the Null Space Property (NSP) of
order k for 0 < γ < 1 if
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Restricted Isometry Property (RIP)

Definition
One says that A ∈ Rm×N has the RIP of order K if there exists
0 < δK < 1 such that

(1− δK )‖z‖`N2 ≤ ‖Az‖`m2 ≤ (1 + δK )‖z‖`N2 ,

for all z ∈ ΣK .

I The RIP turns out to be very useful in the analysis of stability
of certain algorithms;

I the RIP is also introduced because it implies the Null Space
Property, and when dealing with random matrices it is more
easily addressed.

Lemma
Assume that A ∈ Rm×N has the RIP of order K = k + h with
0 < δK < 1. Then A has the NSP of order k and constant

γ =
√

k
h

1+δK
1−δK .
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Stability results

Theorem
Let A ∈ Rm×N which satisfies the RIP of order 2k with δ2k ≤ δ
small enough, then the decoder ∆ = “`1-minimization” satisfies

‖x −∆(y)‖`N1 ≤ C1σk(x)`N1
.



Stability results: noise case

Theorem
Let A ∈ Rm×N which satisfies the RIP of order 2k with δ2k

sufficiently small. Assume further that Ax + e = y where e is a
measurement error. Then the decoder ∆ as the further enhanced
stability property:

‖x −∆(y)‖`N2 ≤ C3

(
σk(x)`N2

+
σk(x)`N1

k1/2
+ ‖e‖`N2

)
.



The class of optimal RIP matrices is not empty

We would like to mention how for different classes of random
matrices it is possible to show that the RIP property can hold with
optimal constants, i.e.,

k � m

log N/m + 1
.

at least with high probability. This implies in particular, that such
matrices exist, they are frequent, but they are given to us only with
an uncertainty.



Random matrices with concentration properties

Let (Ω, ρ) be a probability measure space and X a random variable
on (Ω, ρ). One can define a random matrix A(ω), ω ∈ ΩmN , as the
matrix whose entries are independent realizations of X . We
assume further that ‖A(ω)x‖2

`N2
has expected value ‖x‖2

`N2
and

P
(∣∣∣‖A(ω)x‖2

`N2
− ‖x‖2

`N2

∣∣∣ ≥ ε‖x‖2
`N2

)
≤ 2e−mc0(ε), 0 < ε < 1.



Classical examples

Example

Here we collect two of the most relevant examples for which the
concentration property holds:
1. One can choose, for instance, the entries of A as i.i.d. Gaussian
random variables, Aij ∼ N (0, 1

m ), and c0(ε) = ε2/4− ε3/6. This
can be shown by using Chernoff inequalities and a comparison of
the moments of a Bernoulli random variable to those of a Gaussian
random variable;
2. One can also use matrices where the entries are independent
realizations of ±1 Bernoulli random variables

Aij =

{
+1/
√

m, with probability 1
2

−1/
√

m, with probability 1
2

.



RIP with high probability

Theorem
Suppose that m,N and 0 < δ < 1 are fixed. If A(ω), ω ∈ ΩmN is a
random matrix of size m×N with the concentration property, then
there exist constants c1, c2 > 0 depending on δ such that the RIP
holds for A(ω) with constant δ and k ≤ c1

m
log(N/m)+1 with

probability exceeding 1− 2e−c2m.



Numerical methods for compressed sensing

The `1-minimization problem

min ‖x‖`1 subject to Ax = y

is equivalent to the linear program

min
2N∑
j=1

vj subject to v ≥ 0, (A| − A)v = y .

The solution x∗ is obtained from the solution v∗ via
x∗ = (I | − I )v∗. Any linear programming method may therefore be
used. Interior point methods apply in particular with complexity
O(m2N1.5).



Faster iterative methods

In applications it is important to have fast(er) methods for actually
solving `1-minimization and to have similar guarantees of stability.
We present

I the iteratively reweighted least square method (IRLS)

I a variant of IRLS for low-rank matrix recovery

I iterative hard thresholding

I iterative soft-thresholding and its variations



A rough description
Denote F(y) = {x : Ax = y} and N = ker A. Let us start with a
few non-rigorous observations; next we will be more precise. For
t 6= 0 we simply have

|t| =
t2

|t|
.

Hence, an `1-minimization can be recasted into a weighted
`2-minimization, and we may expect

arg min
x∈F(y)

N∑
j=1

|xj | ≈ arg min
x∈F(y)

N∑
j=1

x2
j |x∗j |−1,

as soon as x∗ is the wanted `1-norm minimizer.
I the advantage is that minimizing a smooth quadratic function
|t|2 is better than addressing the minimization of the
nonsmooth function |t|;

I the obvious drawbacks are that neither we dispose of x∗ a
priori nor we can expect that x∗j 6= 0 for all i = 1, . . . ,N, since
we hope for k-sparse solutions.
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A rough description

We start by assuming that we dispose of a good approximation wn
j

of |(x∗j )2 + ε2
n|−1/2 ≈ |x∗j |−1 and we compute

xn+1 = arg min
x∈F(y)

N∑
j=1

x2
j wn

j ,

then we up-date εn+1 ≤ εn, we define

wn+1
j = |(xn

j )2 + ε2
n+1|−1/2,

and we iterate the process. The hope is that a proper choice of
εn → 0 will allow for the computation of an `1-minimizer.



Variational interpretation

Our analysis of the algorithm starts from the observation that

|t| = min
w>0

1

2

(
wt2 + w−1

)
,

the minimum being reached for w = 1
|t| .

Given a real number ε > 0

and a weight vector w ∈ RN , with wj > 0, j = 1, . . . ,N, we define

J (z ,w , ε) :=
1

2

 N∑
j=1

z2
j wj +

N∑
j=1

(ε2wj + w−1
j )

 , z ∈ RN .
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Variational interpretation

The algorithm can be recasted as an alternating method for
choosing minimizers and weights based on the functional J .

Algorithm 1. We initialize by taking w 0 := (1, . . . , 1). We also set
ε0 := 1. We then recursively define for n = 0, 1, . . . ,

xn+1 := arg min
z∈F(y)

J (z ,wn, εn) = arg min
z∈F(y)

‖z‖`2(wn)

and

εn+1 := min(εn,
r(xn+1)K+1

N
),

where K is a fixed integer that will be described more fully later. We
also define

wn+1 := arg min
w>0

J (xn+1,w , εn+1).

We stop the algorithm if εn = 0; in this case we define x j := xn for
j > n. However, in general, the algorithm will generate an infinite
sequence (xn)n∈N of distinct vectors.



Sketched convergence properties
Note that for each n = 1, 2, . . . , we have

J (xn+1,wn+1, εn+1) =
N∑
j=1

[(xn+1
j )2 + ε2

n+1]1/2.

We also have the following monotonicity property which holds for
all n > 0:

J (xn+1,wn+1, εn+1) 6 J (xn+1,wn, εn+1)

6 J (xn+1,wn, εn) 6 J (xn,wn, εn).

Lemma
For each n > 1 we have

‖xn‖`1 6 J (x1,w 0, ε0) =: A

and
wn
j > A−1, j = 1, . . . ,N.
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Sketched convergence properties

As

A−1‖xn+1 − xn‖2
`2
≤ 2(J (xn,wn, εn)− J (xn+1,wn+1, εn+1)), ∀n

we obtain (by telescopic sum)

∞∑
n=1

‖xn+1 − xn‖2
`2
6 2A2.

In particular, we have

lim
n→∞

(xn − xn+1) = 0.



(Super)linear rate of convergence under NSP

The linear rate can be improved significantly, by a very simple
modification of the rule of updating the weight:

wn+1
j =

(
(xn+1

j )2 + ε2
n+1

)− 2−τ
2
, j = 1, . . . ,N, for any 0 < τ < 1.

This corresponds to the substitution of the function J with

Jτ (z ,w , ε) :=
τ

2

 N∑
j=1

z2
j wj +

N∑
j=1

ε2wj +
2− τ
τ

1

w
τ

2−τ
j

 .
Surprisingly the rate of local convergence of this modified
algorithm is superlinear.
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(Super)linear rate of convergence under NSP

The rate is larger for smaller τ , increasing to approach a quadratic
regime as τ → 0. More precisely the local error En := ‖xn − x∗‖τ

`Nτ
satisfies

En+1 6 µ(γ, τ)E 2−τ
n ,

where µ(γ, τ) < 1 for γ > 0 sufficiently small.

The validity is
restricted to xn in a (small) ball centered at x∗. In particular, if x0

is close enough to x∗ then the estimate ensures the convergence of
the algorithm to the k-sparse solution x∗.
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Reweighted iterative least squares: `τ minimization τ < 1



Re-weighted Iterative Least Squares: `τ minimization τ < 1



Rating movies as low-rank matrix completion problem



Low-rank matrix completion
Low-rank matrix identification from few linear measurements:
nuclear norm minimization.

argmin{Xij=Mij :ij∈Ω} rank(X ) ⇔ argmin{Xij=Mij :ij∈Ω}

n∑
i=1

σi (X ).

Theorem
Let M be a “generic” n1 × n2 matrix of rank r and
n = max(n1, n2). Suppose we observe m entries of M uniformly at
random on Ω. Then there exist C , c > 0 such that if

m ≥ Cn5/4r(β log n),

then the solution X ∗ to

argmin{Xij=Mij :ij∈Ω}

n∑
i=1

σi (X ).

is unique and concides with M with probability 1− cn−β, for β > 0.



The IRLS algorithm adapted to matrices

Algorithm 2. We initialize by W (0) = 1, γ < 1, and ε0 = 1. Then,
recursively

X (n+1) := argmin{Xij=Mij :ij∈Ω} ‖XW
(n)‖F ,

εn+1 := min{εn, γσK+1(X (n+1))}
W (n+1) := [(X (n+1))∗X (n+1) + I · ε2

n+1]−1/4

Theorem
Let M be a “generic” n1 × n2 matrix of rank r and
n = max(n1, n2). Suppose we observe m entries of M uniformly at
random on Ω. Then there exist C , c > 0 such that if

m ≥ Cn5/4r(β log n).

and εn → 0, then the algorithm converges to a matrix X̄ which
concides with M with probability 1− cn−β, for β > 0.



Iterative Hard Thresholding

Algorithm 3. We initialize by taking x0 = 0. We iterate

xn+1 = Hk(xn + A∗(y − Axn)),

where
Hk(x) = x[k],

is the operator which returns the best k-term approximation to x .

Note that if x∗ is k-sparse and Ax∗ = y , then x∗ is a fixed point of

x∗ = Hk(x∗ + A∗(y − Ax∗)).

This algorithm can be seen as a minimizing method for the
functional

J (x) = ‖y − Ax‖2
`N2

+ 2α‖x‖`N0 ,

for a suitable α = α(k) > 0.



Convergence properties

Theorem
Let us assume that y = Ax + e is a noisy encoding of x via A,
where x is an arbitrary vector. If A has the RIP of order 3k and
constant δ2

3k <
1√
32

, then after at most

n∗ =

⌈
log2

(
‖x‖`N2
‖e‖`N2

)⌉

iterations, the algorithm estimates x with accuracy

‖x − xn∗‖`N2 ≤ 7

(
σk(x)`N2

+
σk(x)`N1√

k
+ ‖e‖`N2

)
.



Some numerical comparisons



Phase transition diagrams: empirical rate of success



`1 minimization as a regularization for inverse problems

We are interested in

J(u) := ‖Ku − y‖2
Y + 2‖(〈u, ψ̃λ〉)λ∈I‖`1,α(I),

where K : X → Y is a bounded linear operator acting between two
separable Hilbert spaces X and Y , y ∈ Y is a given datum, and
Ψ := {ψλ}λ∈I is a prescribed countable basis for X with
associated dual Ψ̃ := {ψ̃λ}λ∈I .



`1 minimization as a regularization for inverse problems

Associated to the basis, we are given the synthesis map
F : `2(I)→ X defined by

Fu :=
∑
λ∈I

uλψλ, u ∈ `2(I).

We can re-formulate equivalently the functional in terms of
sequences in `2(I) as follows:

J(u) := Jα(u) = ‖(K ◦ F )u − y‖2
Y + 2‖u‖`1,α(I).

For ease of notation let us write A := K ◦ F .
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A minimizing algorithm: iterative thresholding

Several authors have proposed an iterative soft-thresholding
algorithm to approximate a minimizer u∗ := u∗α, which is the limit
of sequences u(n) defined recursively by

u(n+1) = Sα
[
u(n) + A∗y − A∗Au(n)

]
,

starting from an arbitrary u(0),

where Sα is the soft-thresholding
Sα(u)λ = Sαλ(uλ) with

Sα(x) =


x − α x > α
0 |x | ≤ α
x + α x < −α

.
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The surrogate functional

The algorithm can be recasted into an iterated minimization of a
properly augmented functional, which we call the surrogate
functional of J ,

J S(u, a) := ‖Au− y‖2
Y + 2‖u‖`1,α(I) + ‖u− a‖2

`2(I)−‖Au−Aa‖2
Y .

Assume here and later that ‖A‖ < 1. Observe that

‖u − a‖2
`2(I) − ‖Au − Aa‖2

Y ≥ C‖u − a‖2
`2(I),

for C = (1− ‖A‖2) > 0. Hence

J (u) = J S(u, u) ≤ J S(u, a),

and
J S(u, a)− J S(u, u) ≥ C‖u − a‖2

`2(I).
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The surrogate functional

We can express the optimization of J S(u, a) with respect to u
explicitly by

Sα(a + A∗(y − Aa)) = arg min
u∈`2(I)

J S(u, a).

Algorithm 4. We initialize by taking any u(0) ∈ `2(I). We
iterate

u(n+1) = Sα
[
u(n) + A∗y − A∗Au(n)

]
= arg min

u∈`2(I)
J S(u, u(n)).



Sketch on convergence

As
J (u(n))− J (u(n+1)) ≥ C‖u(n+1) − u(n)‖2

`2(I)

we obtain the numerical convergence

lim
n→∞

‖u(n+1) − u(n)‖2
`2(I) = 0.



Acceleration principles

We illustrate acceleration principles. We emphasize three main
ingredients in particular:

I the problem is set in infinite dimensions;

I multiscale preconditioning;

I adaptivity.
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Rate of convergence results

Exponential (linear rate) convergence, i.e.,

max
{
‖u(n) − u∗‖, Jα(u(n))− Jα(u∗)

}
≤ Cγn, γ < 1,

can be ensured, e.g., when

A fulfills the so-called finite basis injectivity (FBI) condition (K.
Bredies and D. Lorenz), i.e., for any finite set Λ ⊂ I, the
restriction AΛ is injective.



Rate of convergence results

I We have strong convergence of the u(n) to a finitely supported limit
sequence u∗.

I There exists a finite index set Λ ⊂ I such that all iterates u(n) and u∗ are
supported in Λ.

I By the FBI condition, AΛ is injective and hence A∗A|Λ×Λ is boundedly
invertible, so that I − A∗ΛAΛ is a contraction on `2(Λ).

I Using
u

(n+1)
Λ = Sα

(
u

(n)
Λ + A∗Λ(y − AΛu

(n)
Λ )
)

it follows ‖u∗ − u(n+1)‖`2(I) ≤ γ‖u∗ − u(n)‖`2(I), where

γ = max{|1− ‖(A∗A|Λ×Λ)−1‖−1|, |‖A∗A|Λ×Λ‖ − 1|} ∈ (0, 1).

We can have
‖u(n) − u∗‖ ≤ Cγn, γ < 1,

with C arbitrarily large and γ arbitrarily small.
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Attempts of faster algorithms

(a) the GPSR-algorithm (gradient projection for sparse reconstruction),
another iterative projection method, in the auxiliary variables
x , y ≥ 0 with u = x − y (Figueredo, Nowak, and Wright)

(b) the `1 − `s algorithm, an interior point method using preconditioned
conjugate gra dient substeps (this method solves a linear system in
each outer iteration step) (S.-J. Kim, K. Koh, M. Lustig, S. Boyd,
and D. Gorinevsky)

(c) FISTA (fast iterative soft-thresholding algorithm) is a variation of
the iterative soft-thresholding (Beck and Teboulle). Define the
operator Γ(u) = Sα(u + A∗(y − Au)). The FISTA is defined as the
iteration, starting for u(0) = 0,

u(n+1) = Γ

(
u(n) +

t(n) − 1

t(n+1)

(
u(n) − u(n−1)

))
,

where t(n+1) =
1+
√

1+4(t(n))2

2 and t(0) = 1.



Attempts of faster algorithms

(a) the GPSR-algorithm (gradient projection for sparse reconstruction),
another iterative projection method, in the auxiliary variables
x , y ≥ 0 with u = x − y (Figueredo, Nowak, and Wright)

(b) the `1 − `s algorithm, an interior point method using preconditioned
conjugate gra dient substeps (this method solves a linear system in
each outer iteration step) (S.-J. Kim, K. Koh, M. Lustig, S. Boyd,
and D. Gorinevsky)

(c) FISTA (fast iterative soft-thresholding algorithm) is a variation of
the iterative soft-thresholding (Beck and Teboulle). Define the
operator Γ(u) = Sα(u + A∗(y − Au)). The FISTA is defined as the
iteration, starting for u(0) = 0,

u(n+1) = Γ

(
u(n) +

t(n) − 1

t(n+1)

(
u(n) − u(n−1)

))
,

where t(n+1) =
1+
√

1+4(t(n))2

2 and t(0) = 1.



Attempts of faster algorithms

(a) the GPSR-algorithm (gradient projection for sparse reconstruction),
another iterative projection method, in the auxiliary variables
x , y ≥ 0 with u = x − y (Figueredo, Nowak, and Wright)

(b) the `1 − `s algorithm, an interior point method using preconditioned
conjugate gra dient substeps (this method solves a linear system in
each outer iteration step) (S.-J. Kim, K. Koh, M. Lustig, S. Boyd,
and D. Gorinevsky)

(c) FISTA (fast iterative soft-thresholding algorithm) is a variation of
the iterative soft-thresholding (Beck and Teboulle). Define the
operator Γ(u) = Sα(u + A∗(y − Au)). The FISTA is defined as the
iteration, starting for u(0) = 0,

u(n+1) = Γ

(
u(n) +

t(n) − 1

t(n+1)

(
u(n) − u(n−1)

))
,

where t(n+1) =
1+
√

1+4(t(n))2

2 and t(0) = 1.



Innovation

For several operators K and for certain choices of Ψ, the matrix
A∗A can be preconditioned by a matrix D−1/2, resulting in the
matrix D−1/2A∗AD−1/2, in such a way that any restriction
(D−1/2A∗AD−1/2)Λ×Λ turns out to be well-conditioned as soon as
Λ ⊂ I is a small set, but independently of its “location” within I.



Which operators?

Typically we consider (non local) compact operators K

Ku(x) =

∫
Ω
κ(x , ξ)u(ξ)dξ, x ∈ Ω̃,

for Ω̃,Ω ⊂ Rd , u ∈ X := Ht(Ω), and

|∂αx ∂
β
ξ κ(x , ξ)| ≤ cα,β|x − ξ|−(d+2t+|α|+|β|), t ∈ R, α, β ∈ Nd .



Which bases/frames?

Moreover, for the proper definition of the discrete matrix
A∗A := F ∗K ∗KF , we use multiscale tight (wavelet) frame
{ψλ}λ∈I on Ω. We assume:

(i) the index λ = (|λ|, k, e) encodes several different properties, respectively,
the scale |λ|, the spatial location k ∈ Rd , and the wavelet label e
(without loss of cogency in the following we ignore this latter parameter);

(ii) Ωλ := supp(ψλ), |Ω| ∼ 2−|λ| ; we can assume for simplicity that
Ωλ ⊂ 2−|λ|k + 2−|λ|Q, where Q is a suitable cube centered at the origin;

(iii)
∫

Ω
ξα ψλ(ξ) dξ = 0, α = 0, . . . , d∗ ∈ N ;

(iv) ‖ψλ‖∞ ≤ C 2d/2|λ| .



Instructive numerical experiments in an infinite-dimensional
setting

Consider the integral operator K : L2(0, 1)→ L2(0, 1),

Ku(t) =

∫ t

0
u(s) ds, K ∗Ku(t) =

∫ 1

0

(
1−max(s, t)

)
u(s)ds.

I The integration operator can be regarded as a model case for
more general Fredholm-type integral operators;

I K is injective and bounded with norm ‖K‖ = 2/π ≈ 0.64.

I The nonzero eigenvalues of K ∗K are explicitly available as
λn = 1/(π(n + 1

2 ))2.



Compressibility of the matrix
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Nonzero pattern of the system matrix A∗A, using piecewise linear
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L2(0, 1) with 2 vanishing moments.



RIP for infinite matrices

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

#random columns

co
nd

2(A
T*
A

T
)

 

 
no prec.
diag. prec.
b.−diag. prec.

Average spectral condition numbers K(A∗A|Λ) of small
N × N-submatrices of A∗A, without preconditioning (solid line),
with diagonal preconditioning (dashed line), and with
blockdiagonal preconditioning (dotted line).



Adaptive thresholding parameter

For threshold parameters α, α(n) ∈ RI+, where α(n) ≥ α, i.e.,

α
(n)
λ ≥ αλ for all λ ∈ Λ, and ᾱ = infλ∈I αλ > 0, we consider the

iteration

u(0) = 0, u(n+1) = Sα(n)

(
u(n) + A∗(y − Au(n))

)
, n = 0, 1, . . .

which we called the decreasing iterative soft-thresholding algorithm
(D-ISTA).



Prescribed linear convergence

Theorem (Dahlke, Fornasier, and Raasch ’09)

Let ‖A‖ <
√

2 and let ū := (I − A∗A)u∗ + A∗y ∈ `wα (I) for some

0 < α < 2. Moreover, let L = L(α) :=
4‖u∗‖2

`2(I)

ᾱ2 + 4C‖ū‖α`wα(I)ᾱ
−α,

and assume that for S∗ := supp(u∗) and all finite subsets Λ ⊂ I
with at most #Λ ≤ 2L elements,

‖(I − A∗A)|S∗∪Λ×S∗∪Λ‖ ≤ γ0,

where 0 < γ0 < 1. Then, for any γ0 < γ < 1, the iterates u(n)

fulfill # supp u(n) ≤ L and they converge to u∗ at a linear rate

‖u∗ − u(n)‖`2(I) ≤ γn‖u∗‖`2(I) =: εn

whenever the α(n) are chosen according to

αλ ≤ α
(n)
λ ≤ αλ + (γ − γ0)L−1/2εn, for all λ ∈ Λ.



Gaussian matrices and rates of convergence

Computation of a sparse minimizer u∗ for A being a 500× 2500 matrix with

i.i.d. Gaussian entries, α = 10−3, γ0 = 0.1 and γ = 0.95.



Gaussian matrices and rates of convergence

Computation of a sparse minimizer u∗ for A being a 500× 2500 matrix with
i.i.d. Gaussian entries, α = 10−4, γ0 = 0.01 and γ = 0.998.



A domain decomposition method for large scale computing

I We consider the minimization of J = Jα, by alternating
subspace corrections.

I We start by decomposing the “domain” of the sequences I
into two disjoint sets Λ1,Λ2 so that I = Λ1 ∪ Λ2.

I Associated to a decomposition C = {Λ1,Λ2} we define the
extension operators Ei : `2(Λi )→ `2(I), (Eiv)λ = vλ, if
λ ∈ Λi , (Eiv)λ = 0, otherwise, i = 1, 2. The adjoint operator,
which we call the restriction operator, is denoted by Ri := E ∗i .
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With these operators we define the functional J (x1, x2),
J : `2(Λ1)× `2(Λ2)→ R, given by

J (x1, x2) := J (E1x1 + E2x2).

In analogy to the Schwartz multiplicative algorithm in domain
decoposition in numerics for PDEs, we analyze the following
algorithm: 

x
(n+1)
1 = argminv1∈`2(Λ1)J (v1, x

(n)
2 )

x
(n+1)
2 = argminv2∈`2(Λ2)J (x

(n+1)
1 , v2)

x (n+1) := E1x
(n+1)
1 + E2x

(n+1)
2 .
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Let us observe that
‖E1x1 + E2x2‖`1(Λ) := ‖x1‖`1(Λ1) + ‖x2‖`1(Λ2), hence

argminv1∈`2(Λ1)J (v1, x
(n)
2 )

= argminv1∈`2(Λ1)‖(y − AE2x
(n)
2 )− AE1v1‖2

2 + α‖v1‖1.

A similar formulation holds for argminv2∈`2(Λ2)J (x
(n+1)
1 , v2).

This means that the solution of the local problems on Λi is of the
same kind as the original problem argminx∈`2(Λ)J (x), but the
dimension for each has been reduced.
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This leads to the following sequential algorithm

Algorithm 5.


x

(n+1,0)
1 = x

(n,L)
1

x
(n+1,`+1)
1 = Sα

(
x

(n+1,`)
1 + R1A

∗((y − AE2x
(n,M)
2 )− AE1x

(n+1,`)
1 )

)
` = 0, . . . , L− 1
x

(n+1,0)
2 = x

(n,M)
2

x
(n+1,`+1)
2 = Sα

(
x

(n+1,`)
2 + R2A

∗((y − AE1x
(n+1,L)
1 )− AE2x

(n+1,`)
2 )

)
` = 0, . . . ,M − 1

x (n+1) := E1x
(n+1,L)
1 + E2x

(n+1,M)
2 .



This leads to the following parallel algorithm

Algorithm 6.


x

(n+1,0)
1 = x

(n,L)
1

x
(n+1,`+1)
1 = Sα

(
x

(n+1,`)
1 + R1A

∗((y − AE2R2x
(n))− AE1x

(n+1,`)
1 )

)
` = 0, . . . , L− 1
x

(n+1,0)
2 = x

(n,M)
2

x
(n+1,`+1)
2 = Sα

(
x

(n+1,`)
2 + R2A

∗((y − AE1R1x
(n))− AE2x

(n+1,`)
2 )

)
` = 0, . . . ,M − 1

x (n+1) :=
E1x

(n+1,L)
1 +E2x

(n+1,M)
2 +x(n)

2
.



Theorem
The (sequential and parallel) subspace correction algorithms
produce a sequence (x (n))n∈N in `2(I) whose strong accumulation
points are minimizers of the functional J . In particular, the set of
strong accumulation points is non-empty. If the minimizer is
unique then the whole sequence (x (n))n∈N converges to it.





A few references

I A Mathematical Introduction to Compressive Sensing (Holger
Rauhut and Simon Foucart), Birkhäuser-Springer, 2013.

I Numerical methods for sparse recovery book chapter in
“Theoretical Foundations and Numerical Methods for Sparse
Recovery”, M. Fornasier (ed.) Radon Series in Applied and
Computational Mathematics 9, de Gruyter, 2010

I Compressive Sensing (Massimo Fornasier and Holger Rauhut),
book chapter in “Handbook of Mathematical Methods in
Imaging” Springer.

I An Overview on Algorithms for Sparse Recovery (Massimo
Fornasier and Steffen Peter) book chapter in “Sparse
Reconstruction and Compressive Sensing in Remote Sensing”,
X. Zhu and R. Bamler (ed.), Springer, 2015.

Publications:
https://www-m15.ma.tum.de/Allgemeines/PublicationsEN

Software:
https://www-m15.ma.tum.de/Allgemeines/SoftwareSite

https://www-m15.ma.tum.de/Allgemeines/PublicationsEN
https://www-m15.ma.tum.de/Allgemeines/SoftwareSite
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