Adaptive Progressive Edge-Growth Construction of Low Density Sensing Matrices

Miguel Heredia Conde
heredia@zess.uni-siegen.de

Dr.-Ing. Klaus Hartmann
Prof. Dr.-Ing. Otmar Loffeld
Contents

• Introduction
 ◦ Phase-Shift-Based Time-of-Flight (ToF) Imaging
 ◦ Pulsed ToF
• CS for Pulsed ToF
• Random Sensing Matrices
 ◦ Coherence Evaluation
 ◦ Sparse Recovery Evaluation
• Deterministic Construction of Low-Density Binary Matrices
• An Adaptive Deterministic Construction
 ◦ The Algorithm
 ◦ The Matrix
 ◦ Sparse Recovery Evaluation
• Conclusions
Phase-Shift-Based ToF

- **Measure phase shift instead of time:**
 - Modulated light, typically in the NIR band is emitted to the scene.
 - Modulation frequency in the radio frequency range (20-120MHz).
 - Reflected light reaches the camera with a delay that is proportional to the total distance from the illumination system to the scene point and then to the camera.
 - Intelligent pixels, featuring two or more channels (i.e., multitap pixels) are used to internally correlate the incoming signal with several reference signals.
 - Reference signals with different phase delays are used to sample the cross-correlation function.
 - The relative phase shift can be computed from few measurements (cross-correlation samples).

\[
d = \frac{c}{4\pi f_{\text{mod}}} \theta_d
\]

Since the speed of light is constant, the distance from the sensor to the scene points can be estimated from the phase delay: \(\theta_d = \theta_2 - \theta_1 \).
Motivation: Pulsed ToF

- **Short pulses instead of CW:**
 - Instead of continuously emitting a periodic signal, in pulsed ToF a single pulse is emitted and its echo is received.
 - After a period of inactivity the process is repeated until the desired SNR is attained.
 - **Reducing the pulse width yields better depth resolution**, at the time it allows attaining improved SNR without increasing the average illumination power. ✅
 - In a conventional pulsed system, the depth measurement range is fully determined by the pulse width. **Too short widths yield unacceptably short ranges. ❌**
 - One would desire attaining the depth resolution corresponding to the shortest pulse width allowed by the hardware, while keeping an arbitrarily large range. 🧐

The triangular cross-correlation function eliminates the need for a costly arctangent transformation. The depth can be estimated linearly from the raw data.

\[
d = c \frac{Q_B}{T Q_A + Q_B}
\]
CS for Pulsed ToF

- **Goals:**
 - High depth resolution
 - Short pulses → Limits: drivers and light sources
 - Small discretization steps in time domain
 - Large depth range
 - Many discrete steps
- **What is favorable?**
 - Extreme sparsity of the pulse echo(es) in time domain
- **What is unfavorable?**
 - Intractable signal dimensionality
 - E.g., desired range: 10m at 1mm resolution yields \(n = 10^4 \) dimensions
 - Unknown signal support → Needle in the hay
 - Dense sensing matrices ensure that we don’t miss the support, but…
 - The SNR of the measurements tends to zero as \(n \to \infty \)
Random Sensing Matrices

- **Gaussian:**
 - Elements drawn from \(i.i.d. \) normal random variables, e.g., of zero mean and \(1/m \) variance. Good CS matrices, from an RIP perspective.

- **Bernoulli:**
 - Bernoulli with elements +1 and −1, drawn from \(i.i.d. \) Bernoulli random variables with \(p = q = 0.5 \). Good CS performance, close to that of Gaussian matrices. Binary.
 - Bernoulli with elements +1 and 0, drawn from \(i.i.d. \) Bernoulli distributions with \(p = q = 0.5 \). Reportedly bad CS performance\(^1\), but binary and sparse.

\[\text{Gaussian sensing matrix} \quad \text{Bernoulli sensing matrix}\]

Reduction of storage requirements by, at least, the bit depth used for quantization of the non-binary matrix elements.

\(^1\) V. Chandar, “A negative result concerning explicit matrices with the restricted isometry property,” Tech. Rep., 2008.
Random Sensing Matrices

- **Performance Evaluation:**
 - Signal dimensionality $n = 1024$. Number of measurements m as a function of the sparsity s. $10 \leq s \leq 100$, $1 \leq \frac{m}{s} \leq 5$.

- Coherence Evaluation:

- Sparse Recovery Evaluation:
Low-Density Binary Matrices

- **Objectives:**
 - Low density, i.e., as few nonzeros per row/column as possible
 - High regularity, i.e., the density can be globally defined
 - Low coherence

- **Progressive deterministic construction:**
 - Sequential addition of edges to the corresponding Tanner graph
 - Criterion: (local) *girth* maximization at each edge addition
 - Problem: a sequence of optimal decisions does not ensure attaining the global optimum, in terms of *girth* maximization
 - Example:

```
1 1 0 1 0 1
0 0 1 1 1 0
0 1 0 0 1 0
1 0 1 0 0 1
```

\[m = 4 \text{ check nodes} \]
\[n = 6 \text{ symbol nodes} \]

\[g_l = 6 \]
\[n = 6 \text{ columns} \]
\[m = 4 \text{ rows} \]

Tanner Graph

LDPC Matrix
Adaptive Deterministic Construction (Algorithm)

Algorithm 1 Adaptive Progressive Edge-Growth (APEG)

Initialize: $\Omega_x^{(1)} = \emptyset$, $\Pi_i^{(0)} = \emptyset \forall i$, $1 \leq i \leq m$

1: for $i = 1; i := i + 1$ to $i = m$ do
2: for $k = 1; k := k + 1$ to $k = d_\epsilon$ do
3: if $k = 1$ then
4: Candidate set: $\Omega_{ci}^{\text{cand}} = \hat{\Omega}^{(i)}$
5: else
6: Expand tree up to depth $l | \hat{\Omega}_{ci}^l \neq \emptyset$ and $\hat{\Omega}_{ci}^{l+1} = \emptyset$
7: Candidate set: $\Omega_{ci}^{\text{cand}} = \hat{\Omega}_{ci}^l \cap \hat{\Omega}^{(i)}$
8: end if
9: Select symbol node index: $j = \arg \min_{j \in \Omega_{ci}^{\text{cand}}} d_{sj}$

10: Add new edge: $\Pi_i^{(k)} = \Pi_i^{(k-1)} \cup (c_i, s_j)$
11: end for
12: Sensing kernel: $\hat{\phi}_i \in \mathbb{R}^n \mid \phi_{i,j} = 1 \Leftrightarrow (c_i, s_j) \in \Pi_i$
13: Measure: $y_i = \hat{\phi}_i^\top \vec{x}$
14: if $y_i < \varepsilon$ then
15: Update forbidden support: $\hat{\Omega}_x^{(i+1)} = \hat{\Omega}_x^{(i)} \cup \text{supp}(\vec{\phi}_i)$
16: else
17: Preserve forbidden support: $\hat{\Omega}_x^{(i+1)} = \hat{\Omega}_x^{(i)}$
18: end if
19: end for

Forbidden Support Set

Maximum Tree Expansion (level l):
$\hat{\Omega}_{ci}^l \neq \emptyset$, $\hat{\Omega}_{ci}^{l+1} = \emptyset$

Candidate Set: $\Omega_{ci}^{\text{cand}} = \hat{\Omega}_{ci}^l \cap \hat{\Omega}^{(i)}$

Edge Addition Loop (k)

Ω_{ci}

$\Omega^{(i)}$

Ω_{ci}^l

Ω_{ci}^{l+1}

Ω_x

$\phi_{l,j} = 1$

New Edge: (c_i, s_j)

Measure: $y_i = \vec{\phi}_i^\top \vec{x}$

Update $\Omega^{(i)}$ if necessary

Measurement Loop (i)
Adaptive Deterministic Construction

- How does the sensing matrix look like?
 - Progressive Edge Growth (PEG) Baseline (no adaptiveness):
 - Adaptive PEG (APEG) Construction:

Strong overlap between sensing kernels support and signal support!
Adaptive Deterministic Construction

- Sparse Recovery Evaluation (normalized error):
 - Progressive Edge Growth (PEG) Baseline:
 - Adaptive PEG (APEG) Construction:

\[d_c = 20 \] \[d_c = 40 \] \[d_c = 60 \]
Conclusions

- Gaussian and \(\pm 1 \) Bernoulli random matrices exhibit excellent CS recovery performance.
- A construction method of low-density binary sensing matrices has been proposed that is both deterministic and adaptive.
- Sensing matrices constructed using our APEG method exhibit better recovery performance than random and non-adaptive deterministic matrices.
- Densities between 1% and 5% have been observed to be sufficient when dealing with \(n = 1024 \) dimensions.
Graduiertenkolleg 1564
'I Imaging New Modalities'

Center for Sensor Systems

Thank you for your attention.

Did you like the idea?
Then, download the sample code and test the performance of the APEG-LDPC matrices yourself!
https://uni-siegen.sciebo.de/index.php/s/mDKhRTClQoA77I9